
TWO HEXACHORDAL THEOREMS IN GENERAL COMPACT GROUPS

Abstract : The hexachordal theorem is a classical and non obvious result in music theory, stated in most
textbooks (see [4, 12, 11]). In its diverse forms essentially states that a subset and its complementary subset
have the same autocorrelation function : the map iv(A) : t 7→ µ(A ∩ (A+ t)) that measures the intersection
of A with its translate by t is identical to iv for the complement of A (up to a constant in general, which is
0 when A has the same measure as its complement, as in the original ‘hexachord’ case in the cyclic group
Z12). So far this has been proven in abelian compact topological groups. Here we state the generalization
to non abelian compact groups, like the four dimensional sphere S3 = SU(2). As it happens there are two
hexachordal theorems in this general case, not one.

I. HISTORY OF HEXACHORDAL THEOREMS

The origin of the hexachordal theorem is somehow lost in the mists of time : according to Milton Babbitt, the
first proof around 1960 involved very deep mathematics (though some suspect that this declaration is a joke).
The context was the interval vector of subsets of the set of notes, later known as pc-sets. This map was defined
on the cyclic group Z12 by

∀A ⊂ Z12 iv(A) : t 7→ ](A ∩ (A+ t))
For instance when A = {0, 1, 4, 6} the map takes values < 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1 >. The original
Hexachordal Theorem states

Théorème 1. For any hexachord A ⊂ Z12 (i.e. #A = 6), iv(A) = iv(A) where A denotes Z12 \A.

The map iv can be seen as an autocorrelation function, or as as the histogram of the intervals between A and
itself. A generalization states that ∀A ⊂ Z12 , iv(A) = iv(A)+C where the constantC is easily computed for
t = 0, since iv(A)(0) = #(A). The most general statement involves the original interval function introduced
by Lewin in his very first paper : [8]

Théorème 2. IFunc(A,B) = IFunc(A,B) + C for any subsets A,B of a cyclic group Zc, where
IFunc(A,B)(t) = #((A+ t) ∩B).

It is stated and proved in two lines in [12].
Now where next ? In [13] the simplest continuous case, the circle S1, is presented, as a limit of the discrete
cyclic groups Zn when n grows to infinity. But in fact the theorem makes sense in any abelian group
(denoted additively) with a Haar measure, i.e. with a map from its (measurable) subsets to R+ satisfying
µ(A + t) = µ(A). The author had noticed this fact when discussing with Jack Douthett the generalization of
Maximally Even Sets (by way of Fourier Transform) to torii, first discrete and then the general T n = S1×. . . S1
with the unit product measure. In this extended form, it was first stated in print, as far as we know, by John
Mandereau in his master thesis[10] :

Théorème 3. Let (G,+) be a topological compact group, abelian, and µ be a Haar measure on G. ∀ A ⊂ G,
define iv(A) : t 7→ µ(A ∩ (A+ t)). Then

iv(A) = iv(A) + µ(A)− µ(A)

(notice that if A is measurable then so are A+ t and A ∩ (A+ t))
The problem with more general groups is that all of this does not make sense anymore : in particular there are
two different actions of a group on its subsets, by left and by right translation. We still want our measure to
be translation invariant, in order to define the map iv, and finite : else a finite measure subset would have an
infinite complement. So the general definition is

Définition 1. Let ivr(A) be the map

g 7→ µ(A ∩ (A× g)) =
∫
G

1A(h)1A(h× g−1) dµ(h)

1
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(written as an integral with µ a Haar measure on the compact group G). Similarly the left interval content is
defined as

ivl : g 7→ µ(A ∩ (g ×A)) =
∫
G

1A(h)1A(g−1 × h) dµ(h)

Then we have the result of this paper :

Théorème 4. LetG be a topological group, compact, separable (i.e. with a dense enumerable subset). ThenG
has a Haar measure µ, left and right invariant, unique up to a multiplicative constant, and for any (measurable)
subset A the map ivr(A) coincides with ivr(Ā), up to a constant ; and similarly with ivl as defined above.

[13] asked whether the hexachordal theorem could be generalized from S1 to the usual sphere S2. But this is
hopeless, as there is no natural way to define a correlation function for subsets of S2. After S1, the next sphere
with a group structure is S3, which will be used as an example in the following section. Other possibilities and
extensions will be discussed in the last section.

II. PROOFS AND OTHER TECHNICALITIES

1. Haar measure. The main topological result is well known in group theory :

Théorème 5. Let G be a topological group, compact, separable (i.e. with a dense enumerable subset). Then
G has a Haar measure µ, left and right invariant, unique with the condition µ(G) = 1.

Preuve. Usually this is proved using the Kakutani fixed point theorem on the convex and compact (non
empty !) set of probability measures on G. This can be found in any textbook on topological groups, see
[6] for instance. �

Remarque 1. This theorem is true for any compact Lie group, since as a submanifold of Rn it admits a dense
enumerable subset. Also the differential structure enables to build in each point a multilinear (volume) form
using the tangent bundle, which provides an invariant measure free of charge. This is true for all classical
(linear) groups, rotation groups aso, and for S3, the unit sphere in R4, which admits a canonical group
structure as SU(2) (it is the universal covering of the rotation group SO(3)). We give some details on this case
as an illustration of the theorem.

2. Haar measure on S3. We define G = SU(2) = S3 :

Définition 2. The group SU(2) is the set of complex matrices
(
z1 −z2
z2 z1

)
with determinant 1. As a set it

coincides with the sphere in C2 : {|z1|2+|z2|2 = 1}, and hence the unit sphere S3 in R4, x2
1+y2

1+x2
2+y2

2 = 1.

The following is a perhaps better explanation of the group structure on S3 :

Proposition 1. The vector space H of all h = t + xi + yj + zk = t1 + xi + yj + zk, (t, x, y, z) ∈ R4,
where multiplication is defined by relations i× j× k = i2= j2= k2 = −1 is an associative algebra, with
multiplicative unit 1. Defining

h = t− (xi + yj + zk)

we have that N : h 7→ hh = x2 + y2 + z2 + t2 is a morphism (N(h× h′) = N(h)N(h′)), and any non nil

element of H is hence invertible with h−1 =
h√
N(h)

. Hence H is a (non abelian) field.1

The group of units is S = KerN = {h ∈ H | N(h) = 1}, it is isomorphic à SU(2).2

Remarque 2. Two reasonable parametrisations of G = S3 are :
• z1 = cos θ eiϕ, z2 = sin θ eiψ with θ ∈ [0, π/2], 0 6 ϕ,ψ 6 2π.
• t = cos θ, x = sin θ cosϕ, y = sin θ sinϕ cos θ, z = sin θ sinϕ sin θ (spherical coordinates in R4

with r = 1) where for instance 0 6 θ, ϕ 6 π and 0 6 ψ 6 2π.

1The quaternions were invented by Hamilton in 1846.
2H is isomorphic to the whole algebra of matrices

„
z1 −z2

z2 z1

«
.
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Théorème 6. Any Haar measure on G = S3 is a multiple of µ1 = sin 2θ d θ dϕ dψ and µ2 =
sin2 θ sinϕ d θ dϕ dψ.

Remarque 3.
• They are invariant, non only by translation, but also by antipody (h 7→ −h) and inversion (h 7→ h−1 =
h), which may have some musical meaning.
• We have µ1(G) = 4π2, but µ2(G) = 2π2 hence the measures are not equal, but proportional.

Invariance by translation is non trivial, but for the other operations it is almost obvious.

These explicit expressions are derived in [5, 6].

3. Interval function. We follow David Lewin in [8], defining the interval function betweenA,B (measurable
subsets of G) by, for any g, the size of the part of A which, when translated by g, falls in B :

Définition 3. IFunc r(A,B) : g 7→ µ(A ∩B × g−1) =
∫
G

1A(h)1B(h× g) dµ(h).

Here we denote by 1A the characteristic function of A in order to use a familiar integral representation of µ.
Notice that IFunc r 6= IFunc l, where

Définition 4. IFunc l(A,B) : g 7→ µ(A ∩ g−1 ×B) =
∫
G

1A(h)1B(g × h) dµ(h).

Using both invariances (left and right) of the Haar measure on G, we get

Théorème 7.
(1) IFunc r(A, g ×B) = IFunc r(g−1 ×A,B)
(2) ∀g, t ∈ G, IFunc r(A,B)(g × t) = IFunc r(A× g,B)(t)
(3) ∀g ∈ G, IFunc r(A,B)(g−1) = IFunc r(B,A)(g)

and expressions of the same ilk for IFunc l. All derivations proceed in similar ways :

Preuve. (1)

IFunc r(A, g ×B)(t) =
∫
G

1A(h)1g×B(h× t) dµ(h) =
∫
G

1A(h)1B(g−1 × h× t) dµ(h)

=
∫
G

1A(g × h′)1B(h′ × t) dµ(g × h′) =
∫
G

1g−1×A(h′)1B(h′ × t) dµ(h′)

using invariance by left translation (h = g × h′) ; hence
IFunc r(A, g ×B) = IFunc r(g−1 ×A,B).

(2)

IFunc r(A,B)(g × t) =
∫
G

1A(h)1B(h× g × t) dµ(h) =
∫
G

1A×g(h× g)1B(h× g × t) dµ(h× g)

(invariance by right translation here) =
∫
G

1A×g(h′)1B(h′ × t) dµ(h′) = IFunc r(A× g,B)(t)

(3) IFunc r(A,B)(g−1) =
∫
G

1A(h′)1B(h′ × g) dµ(h′) =
∫
G

1A(h × g−1)1B(h) dµ(h) =

IFunc r(B,A)(g). Again invariance by right translation, having h′ = h× g−1.
�

4. Non abelian hexachordal theorem. We denote by Ā the complementaary set G \A. As we said above,

Définition 5. The right interval content of A ⊂ G is the map

ivd(A) : g 7→ µ(A ∩ (A× g)) =
∫
G

1A(h)1A(h× g−1) dµ(h)

The left interval content is defined similarly. We state a more precise form for the main theorem of this paper :
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Théorème 8. The map A 7→ iv(A)− µ(A) is invariant by complementation. When µ(A) = µ(Ā) (“general-
ized hexachords”), then iv(A) = iv(Ā).

Notice that 1A+1Ā = 1 (= 1G) and 12
A = 1A. We generalize the simplest known computation for the classical

hexachordal theorem, such as it can be found in [4].3 Our own favorite proof [1], using Fourier Transform,
works without modification for compact abelian groups, but is unsuitable for the non abelian case.

Preuve.

iv(Ā)(g) =
∫
G

1Ā(h)1Ā(h×g−1) =
∫
G

(1−1A)(h)(1−1A)(h×g−1) =
∫
G

1−1A(h)−
∫
G

1A(h×g−1)+
∫
G

1A(h)1A(h×g−1)

Hence, since (by right invariance)
∫
G

1A(h×g−1) = µ(A×g) = µ(A), we get iv(Ā) = µ(Ā)−µ(A)+ iv(A),

qed. �

Remarque 4. The total measure of G is irrelevant : any multiple of the unit Haar measure can be used, eg µ1
and µ2 are both suitable in the example of G = S3.

III. PERSPECTIVES

It is difficult to envision at present how to generalize further this version of the hexachordal theorem. Of
course, it might be the basis for asymptotic methods (quite popular in mathematical research nowadays) and
some meaning could be given, perhaps, to iv(A)− iv(Ā) even though neitherA nor its complement have finite
measure. Still, if one wishes to retain a grasp on the intuitive origin of the concept, one cannot dispense with
an overall finite measure (so that both a subset and its complement may have one, too) and a Haar measure
in order to define interval vectors. Furthermore, as we have seen in the computations, if IFunc is to make
sense in any reasonable way, then the Haar measure has to be right-invariant too. Since some of those same
computations make use of inverse translations, it is hard to envision less than a topological group structure on
the ambiant set. For instance, a Haar measure on a monoid would be a rare bird indeed. “Locally compact”
is required in order to ensure the existence of a Haar measure (conveniently unique up to a scalar), but overall
compactness is required both for finite measures and for left and right Haar measures being the same. On the
other hand, the “separable” hypothesis, while mathematically mandatory, is not a serious drawback in practice.

In a non abelian group, ivr 6= ivl : for example in the group G of affine transformations in Z12, which is a non
abelian group with 48 elements, consider the subset A = {x 7→ 3 + 5x, 5 + 7x, 2 + 7x, 4 + x, 4 + 3x}. The
Haar measure is the counting measure. Now the maps ivr and ivg differ in some values (not many : 8 out of
48). For instance, if g = (x 7→ 1 + 3x) we get

g ◦A = {2 + 7x, 5x, 7 + 5x, 5 + 3x, 5 + x} while A ◦ g = {7x, 4 + 5x, 1 + 5x, 5 + 3x, 7 + x}
This raises the interesting notion of those subsets A ⊂ G for which ivr = ivl. For instance,subgroups are such
subsets :

Proposition 2. Let H be a subgroup of G. Then

ivl(g) = ivr(g) =

{
µ(H) when g ∈ H
0 else

.

but there are others, like x 7→ x, x+ 1, x+ 2, 5x+ 3 in the affine group above. Suprisingly many of them : for
instance in G above, 4,696 of the 35,960 4-elements subsets share this feature. Empirical evidence suggests a
ratio above 10% of all subsets in general. For a last example, in the good old T/I diedral group of transpositions
and inversions in Z12 there are 2,010 4-elements subsets (out of 10,626) such that ivr = ivl.

As for other spheres, there is little hope, if at all, of expanding the hexachordal theorem to S2 or Sn in general.
As we discussed, we need a group structure in the set in order to define A+ t (or more generally g×A before
we even attempt to compute a measure of A ∩ (g × A).4 There is one larger sphere where the present result
might work : S7 inherits from Cayley’s octavions a quasi-group structure - but it is not associative. Since

3Though this proof has been around in the US - personal communication form D. Tymoczko - we did not see it in print else-
where ; for instance in Rahn’s textbook Basic Atonal Theory the proof is “left as a useful exercise”. Useful indeed !

4The computations showed well that combination and inversion of elements are necessary, with associavity to boot.
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spheres other than S0, S1, S3 and S7 are not parallelizable they cannot be Lie groups[9] (we do not know if
they can still be provided with continuous, but non differentiable, topological group structures) and this leaves
very little hope indeed of a hexachordal theorem on them.
On the other hand, a lesser structure may do as well : following a result by J. Mandereau (to be published
in [7]), an autocorrelation function iv can be inherited on the quotient of a group with a Haar measure by
any of its subgroups, even if not normal : the set of cosets G/H (left or right) does not have itself to be a
group. Extension of this result to the non abelian case would enrich considerably the field of sets with a
(double !) hexachordal theorem. Moreover, considering the particular shapes of iv functions on ME sets, it
may be possible at long last to enlarge their concept to a whole new class of objects. We would like to stress
that in particular, the generalized hexachordal theorem is valid in all finite groups with a particularly simple
Haar measure which is simply the counting measure. Another nice feature is that, though we have to contend
with two hexachordal theorems instead of one, they are both true for any reasonably defined way of measuring
subsets, since the Haar measure is unique.5
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[13] Ballinger, B., Benbernou, N., Gomez, F., Toussaint, G., ORourke, J., The Continuous Hexachordal Theorem, MCM, Yale, 2009.

5This is true even in locally compact groups.


