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Rhythmic canons and Galois theory

Emmanuel Amiot

Abstract

The study of rhythmic canons by mathematicians with musical interest has
given rise to unexpected connections to non trivial mathematical problems. The
author tried a new approach based on a Galoisian interpretation of the novel
results and concepts of Coven and Meyerowitz [4]. Extending this in a second
part to finite fields, he concludes with unexpected results.

1 Rhythmic canons, tiling the line, polynomials

1.1 Canons

1.1.1 Basic definition

As an abstraction of the musical notion, a rhythmic canon is a canon debarred of all
pitches, intensities and other musical parameters, keeping only rhythm. There are several
voices, each playing the same motif, or rhythmic pattern, but beginning at different
onsets. A motif (meaning ‘rhythmic motif’ in the context of this paper) can be modelised
by the set A of the onsets of its different notes. For musical ([17]) and mathematical
([13]) reasons, it is desirable to modelise all these onsets by integers, measuring multiples
of the unit beat. Usually a musical canon is periodic, and some musicians have added
the constraint that on each beat one and only one note is played.

Translates of A (i.e. the different voices) will have the form bi + A; putting all
these offsets bi in one set B, one gets a first possible definition including the periodicity
condition (the rhythmic motif A is usually called 〈〈 inner rhythm 〉〉, the set of onsets B is
called 〈〈outer rhythm 〉〉):

Definition 1. A canon with inner rhythm A, outer rhythm B and period n is given
by two finite subsets A, B ⊂ N and an integer n satisfying

A⊕B ⊕ nZ = Z
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The symbol ⊕ means the sums are direct, i.e. there is one and only one sum whose
result is a given number.

It can be understood, musically, that the motif A is repeated in different voices with
period n, starting points of each voice being given by B: it suffices to write the preceding
equation (A⊕ nZ)⊕B = Z.

Of course, in practice, when people are singing ‘Frère Jacques’ or ‘Der Hahn ist todt’
there is a beginning and an end, that is to say only a finite part of the whole sum is
used. We will ignore these practical details, and concentrate on the mathematical notion
and read the preceding equation modulo n, which yields the definition we will effectively
consider;

Definition 2. A canon with inner rhythm A, outer rhythm B and period n is given
by two finite subsets A, B ⊂ N and an integer n satisfying

A⊕B = Z/nZ

meaning that (A, B) 3 (a, b) 7→ a + b is bijective, onto a complete set of residues modulo
n.

If such an equation is satisfied for a given set A we will say in short that A tiles.

For instance, the motif, or inner rhythm {0, 1, 6, 7} makes a rhythmic canon (i.e. tiles)
with the outer rhythm {0, 2, 4} and period 12. This is clearly equivalent to the problem
of tiling the cyclic group Z/nZ with translates of A (cf. [13], [4], [11] for instance).

Interesting examples in Midi format may be listened to online ([21], [22]). More on
this vocabulary and its history is to be found in [1].

1.1.2 Context

• This definition of rhythmic canons is completely equivalent to the problem of tiling
the line, as proposed in [4], [11], [16] and many others. The equivalence with tiling
Z is not obvious but is discussed elsewhere[1], [11]. It is straightforward to see
that if A ⊕ B = Z/nZ, then A ⊕ (B + nZ) = Z. The reverse is a theorem by
DeBruijn.

• The musical origin of the question of rhythmic canons in the pionneer work of
Dan Tudor Vuza is well explained in [3].

• It can be assumed without loss of generality that both sets A, B begin with 0: if
A tiles Z/nZ, meaning A⊕B = Z/nZ, so does A + k for any k with the same B.
Musically this means shifting the time origin of rhythmic motif A.

• There are several generalisations of the above definition: canons with augmen-
tations ([9]), retrogradations ([20]), multisets ([4]), holes, loops, intervals. . . Some
of these will be mentioned in the present paper as they provided insights and
challenging new ideas for mathematical treatment.
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• There are alternate definitions, some allowing several notes or even no notes on a
single beat. See a detailed introduction in [1], and more references in the bibliog-
raphy.

• It must be stressed that tiling a cyclic group: A⊕B = Z/nZ, and tiling an interval:
A⊕B = {0, 1, 2, . . . n− 1}, are not the same thing. For instance the inner rhythm
A = {0, 2, 3, 6, 9} tiles with period 10, i.e. tiles Z/10Z, but does not tile any
interval of integers (see figure 1). Of course any tiling of an interval provides
a tiling of a cyclic group. In the former case, just like in a fuga, in a musical
rendering of the canon one first hears successive entries of the motif in different
voices, up to a point when t here are no more gaps since on all beats exactly one
voice is playing a note; conversely, if the canon is brought to an end, as several
voices die out, gaps appear again, as can be seen in the illustration. This musically
interesting disorder vanishes when one considers only the mathematical definition
stated above

The first picture shows a canon (with inner rhythm, or motif, A = {0, 2, 3, 6, 9},
and outer rhythm B = {0, 5, 10, 15}), first computing A+B in N, then computing
A ⊕ {0, 5} in Z/10Z: we can see that the reduction modulo 10 corresponds to
listening to the canon at a moment when all voices are playing without leaving
any gap. As in all figures in this paper, time is represented by the horizontal axis
while the different voices, to be read horizontaly, are numbered on the vertical
axis. Such a representation is intended to mimick a musical score.

Figure 1: tiling or not tiling an interval

Of course the cyclic nature of these objects (when considering tilings of Z/nZ with
translates of the set A) might be more properly rendered on a cylindrical (or even
toröıdal) representation like the one on figure 2; but for the sake of readability, the
linear graphical form has been prefered here.

A musical illustration of these canons may be found in [21] .
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Figure 2: a canon going round

1.2 Polynomial formalisation

A common mathematical tool is exponentiation followed by summation. Here we ex-
ponentiate a variable x with the elements of sets A or B, and get a polynomial with
coefficients in {0, 1}, henceforth called a 0-1 polynomial.

Definition 3. The polynomial associated with the finite set A ⊂ N is

A(x) =
∑
i∈A

xi.

As usual, exponentiation turns sums into products, that is to say A + B is transformed
into the product A(x)×B(x).

The set {0, 1, 2, . . . n − 1} is associated with 1 + x + x2 + . . . xn−1, thus we get the
polynomial definition of a rhythmic canon:

Definition 4. The motif A ⊂ N tiles with B ⊂ N, with period n, if

(T0) A(x)×B(x) ≡ 1 + x + x2 + . . . + xn−1 mod xn − 1

is satisfied.

This is equivalent to definition 2.
There are several easy and useful results (see [4], [1], [11]): for instance the cardinality

of A is the value of the associated polynomial when x = 1, and the period is the product
of the cardinalities of A and B :

n = A(1)×B(1).
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2 Conditions on roots of unity

In condition (T0) the polynomial 1+x+x2 + . . . xn−1 appears twice: explicitly, and as a
factor of xn−1, modulo which the equality is taken. It means that it divides the product
A(x) × B(x) (in Z[x]), and by Gauss Lemma, its irreducible factors must divide A or
B. These factors are well known:

Definition 5. The irreducible factors of 1 + x + x2 + . . . xn−1 are the cyclotomic
polynomials Φd, with d > 1 and d | n (d divides n).

These polynomials are in Z[x], are monic, and in C[x] we can factor

Φd(x) =
∏

ξ

(x− ξ) where ξ has exactly the multiplicative order d.

We do not list here all the elementary properties of cyclotomic polynomials. See useful
lemmas in [4] or [1].

This simple fact led in 1998 Ethan Coven and Aaron Meyerowitz to substantial
progress on the tiling question, enabling to answer the question whether a given motif
tiles, or not.

2.1 The Coven-Meyerowitz conditions (T1) and (T2)

We introduce some notations.

Definition 6. Let µn be the group of nth roots of unity : µn = {z ∈ C, zn = 1}.
If A(x) is a 0-1 polynomial, we define RA to be the set of the roots of unity which

are also roots of A.

Observe that all roots of given order d must lie in the same irreducible factor, namely
Φd. This a fact from Galois theory, which is the line of thought in the present paper.

We take special notice of roots whose order is a prime power :

Definition 7. If A(x) is a 0-1 polynomial, let SA be the set of roots of unity which are
roots of A of order pα, for some prime p and α ∈ N∗.

Example: if A = {0, 1, 8, 9, 17, 28} we get A(x) factored as

(1+x)(1−x+x2)(1+x+x2)(1−x2+x4)(1−x3+x6)(1+x3−x4−x7+x8−x9+x11−x12+x13)

The procedure recogListe, developed in the Mathematica notebook canonCrawler
dedicated to the study of rhythmic canons, identifies the cyclotomic factors Φ2, Φ6, Φ3, Φ12, Φ18

(the last factor is not cyclotomic). So RA = {2, 3, 6, 12, 18} while SA = {2, 3}.
Just as p−Sylows are the basic factors of Jordan-Hölder decompositions of abelian

finite groups, the elements of SA play a privileged role in characterizing rhythmic canons.

Theorem 8. Let
(T1) : A(1) =

∏
pα∈SA

p and

(T2) : if pα, qβ[, . . .] ∈ SA then pα × qβ[× . . .] ∈ RA.
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• If A tiles then (T1) is true.

• If (T1) is true and (T2) is true, then A tiles.

• If |A| = A(1) has two prime factors and A tiles, then (T2) is true.

In the example above, condition (T1) reads as 2×3 = A(1) and (T2) is 2×3 ∈ SA. Both
are true, so A tiles (with {0, 3, 15, 18, 21, 33} for instance).

See proofs in [4]. Only the last assertion is really difficult1, see also [1] for a discussion
of musical aspects of the former.

In all known cases of tilings, (T2) is true. It was also proved to be true in a special
case when |A| has three prime factors ([7]). In this paper we will make an even stronger
case for the conjecture that (tiling ⇒ (T2)) in showing that any counter-example, i.e. a
rhythmic canon wherein (T2) would be false, would have to stand in an already excep-
tional class of canons.

There is also a connection to the Fuglede conjecture (see below and [11]).

2.2 Galoisian Automorphism Proves A Fundamental Lemma

Lemma 9. If A tiles with B, with period n, then pA tiles with the same B for any p
coprime to n.

This Lemma, deemed 〈〈 fundamental 〉〉 in Coven-Meyerowitz [4], was in fact first
proved by Vuza [17], going largely unnoticed, then independently by Tijdeman [16],
then with a nicer proof by [4] and rediscovered by the minimalist composer Tom John-
son [private communication]. It is of great interest for music composers, as it enables
to tile with the same motif on a different pattern of entries, or the reverse.

An alternate proof will be given in the annex of this paper, putting forward that this
Lemma essentially relies on the following fact:

Lemma 10. The map ξ 7→ ξp inside the unit circle S1 is an automorphism of the group
µn = {z ∈ C | zn = 1}, when p and n are coprime.

Indeed, it is the restriction to S1 of one of the Galois automorphisms of the cyclotomic
field generated by µn.

This means that the order of an element of RA is unchanged by this transformation,
or its reverse. Hence changing A to pA, which changes A(x) into A(xp), does not change
the set R:

Proposition 11. If p is coprime with the period n of the canon, then RA = RpA.

The detailed proof is to be found in the annex.

1Relying ultimately on a result by Sands founded on the decomposition as a direct product of the
Galois group of the cyclotomic field Q[e2iπ/(pαqβ)].
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2.3 Generating canons

2.3.1 Some generative techniques

Starting from a given rhythmic canon A⊕ B = Z/nZ, there are several known ways to
produce new canons, which are used (and sometimes originated) by music composers.
We will see that there is mathematical relevance to these manipulations.

• Duality.

Simple yet effective (especially musically): just exchange A and B.

• Affine transformation.

As in the aforementioned 〈〈 fundamental Lemma 〉〉, pA ⊕ B is still equal to Z/nZ
when p is coprime with n. Reducing lists of canons to their orbits under the
affine group is a useful way to limit the combinatorial explosion (of course in
practice there is already reduction modulo circular permutation, i.e. the action
A 7→ A + k mod n).

• Dilatation (see [6]).

Each note, and each rest, in the rhythmic motif, is replaced by k copies of itself.
In the example below, the original motif is A = {0, 2, 7} and it is changed into

Â = {0, 1, 4, 5, 14, 15}. Some have formalised this transformation as a kind of
tensorial product. I will state it in terms of 0-1 polynomials:

Definition 12. The dilatation of the rhythmic canon A ⊕ B = Z/nZ is the

result of turning A(x) into Â(x) = (1 + x + x2 + . . . xk−1)× A(xk) and B(x) into

B̃(x) = B(xk).

It is immediate that Â tiles with outer rhythm kB = B̃ if A tiles with B.

Figure 3: Dilatating a canon
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This may be combined with the duality operation.

• Concatenation.

Repeating the motif yields a canon of longer period. See figure 3.

Definition 13. The k−concatenation of rhythmic canon A ⊕ B = Z/nZ is the
canon

(A⊕ {0, n, 2n, . . . (k − 1)n)⊕B = Z/(knZ)

I am indebted to Harald Fripertinger for stressing the importance of this
seemingly trivial transformation.

Figure 4: Repeating a canon

• Complementation.

If A tiles, there are several possible ‘outer rhythms’ B, i.e. solutions of the equation
A ⊕ B = Z/nZ. Computers can provide a list of all possible B’s though the
computing time quickly gets prohibitive for n well over 100.

The last transformations might enter under the general framework of 〈〈tensorial products
of canons 〉〉, as proposed by Frank Jedrzejewski [10]. Combining all of these enables
to find numerous rhythmic canons, as exposed in seminar MaMuX [2].

2.3.2 What happens to conditions (T1), (T2).

Considering the sets RA, SA, we prove in the annex the following:

Theorem 14. All of the above transformations preserve condition (T1): if a rhythmic
motif satisfies (T1) then any of its transforms by one of the above maps also satisfies
(T1).

Similarly, all of the above transformations, except perhaps complementation, preserve
condition (T2).
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Indeed it looks quite probable that ALL canons can be produced with this set of trans-
formations, from the trivial canon {0} ⊕ {0} = {0} (sometimes increasing the period,
and then reducing the canon to a smaller one). Such manipulations and generative pro-
cesses on canons are currently implemented in musical software such as OpenMusic
(developed in Ircam, Paris). The only operation which might give an exception to the
preservation of (T2) is complementation: we could not prove that if A⊕B = Z/nZ and
A verifies (T2), then B must verify (T2) too, though no counter example is known.

2.3.3 About Fuglede’s spectral conjecture in dimension 1

Shortly after the paper by Coven-Meyerowitz [4], it was proved by Izabella Laba
[11] that conditions (T1) + (T2) imply the spectral condition, that is to say one side of
the Fuglede’s conjecture. Perhaps it is worthwhile to state this conjecture in terms of
roots of polynomials, as it stands in [11].

Definition 15. Let A be a finite subset of N, with smallest element 0, A(x) the associ-
ated polynomial and N = A(1) = ]A.

A has a spectrum Λ if and only if there exists a set Λ = {λ0 = 0 < λ1 < . . . λN−1 < 1}
such that e2iπ(λj−λk) is a root of A(x) for all (j, k) with j 6= k.

Fuglede conjecture states that A tiles (i.e. there exists n ∈ N∗, B ⊂ N and A ⊕ B =
Z/nZ) ⇐⇒ A has a spectrum Λ. It was proved in a number of cases in dimension > 1,
and disproved recently in dimension 5, considering some complex Hadamard matrixes,
by Terence Tao (see [19]). It is still an open problem in dimension 1.

So by [11], condition (T2) (along with (T1)) implies tiling, and also implies the exis-
tence of a spectrum (directly related to the pα ∈ SA). Moreover, whenever tiling implies
(T2) we have the spectral condition. This is true for instance whenever the number of
notes of the motif has at most two prime factors, and so far in all known tilings of the
line (i.e. rhythmic canons). Now the question is

Open question Is (T2) a necessary condition for tiling in all cases?

The preceding transformational results allow a drastic reduction of the number of pos-
sible exceptions.

Definition 16. A⊕B = Z/nZ is a cyclic canon if there exists d ∈ Z/nZ, d 6= 0, such
that A + d = A (or B + d = B). An acyclic canon is a canon which is not cyclic.

This name is simpler than ’Regular Canons of Maximal Category’ introduced in [17].
We will prove the following :

Theorem 17. If a rhythmic canon has a factor not satisfying condition (T2) then it
is collapsible to an acyclic canon, not satisfying condition (T2).

By ‘collapsible’ we mean that such a canon is obtained by concatenation (repetition) of
the motif of a smaller canon, and this reduction operation (combined with duality) can
be repeated until an acyclic canon is reached. Here is a simple example, with successive
reductions; notice the duality operation between the third and fourth versions:
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Figure 5: collapsing a canon

Which means that essentially we must look for possible counter examples to condition
(T2) among the acyclic canons.

It was proved by Hajòs (and others, notably Dan Tudor Vuza [17], theorem
1b) that acyclic canons exist only for very special periods n, the smallest ones being
72,108,120. . .

Definition 18. If Z/nZ can be expressed as a direct sum of two acyclic subsets, it is
called a 〈〈bad group 〉〉. If not, it is a Hajòs group.

It was recently shown that actual acylic canons are very sparse material (see H.
Fripertinger’s paper in the present proceedings): typically one out of several millions
in practice, and this only for very special values of n.

Also we get an extension of [11] where it was stated that when n = pαqβ, tiling
implies the spectral condition (via (T2)):

Corollary 19. If A tiles with period n and Z/nZ is a Hajòs group, then (T2) holds,
hence A has a spectrum.

This is the case (see [18]) when n = pα, n = pαq, n = p2q2, n = pqr, n = p2qr, n =
pqrs (p, q, r, s distinct primes), of which the first three were consequences of theorem B2
of [4]; the other cases are new as far as we know.

This narrows the possibility of tilings without (T2) down to really exceptional canons.
Unfortunately, we only know algorithms for building some acyclic canons (see [3] for
instance), no general recipe is known for finding all of them f or a given period. All of
these recipes ensure that the resulting canon verifies (T2).
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Remark 20. Among the cases excluded by the above theorem are the special cases
of the tilings of N; according to a lemma of Nicholas de Bruijn on ‘British Number
Systems’ [5]), such tilings are collapsible recursively to the most trivial tiling, {0}⊕ {0}
(like in above figure). Hence any such tiling must satisfy (T2). This was suggested in the
end of [4], and Laba mentions on her home page that it has been proved independently.

The theorem above states that a tiling motif A and any concatenation of A must
simultaneously satisfy (or infirm) condition (T2); this leads to an alternate proof of
theorem 1.6 in [12], which studies products of ‘metronomes’ (this tool is defined in the
annex). As it is easily shown that if a tiling motif A is spectral then any concatenation
of A also is, all this really boils down to this: the difficulty in Fuglede’s conjecture lies
with Vuza(i.e. acyclic) canons.

Most conjectures on the topic of tiling the line have been proved wrong, will the one
above follow suit ? Counter-examples must be tilings with big periods. At the present
moment, all aperiodic canons with periods below 120 are known (see Fripertinger’s
paper in the present proceedings), so all tiles with period below 120, and many others
besides, have a spectrum in the sense of definition 15.

2.4 Towards finite fields

The theoretical reason for exploring finite fields in connection with the tiling problem
is that the conditions in [4] take for granted that A(x) is a 0-1 polynomial. This is a
strong condition, as one sees when trying to construct A from some cyclotomic factors2

and finite fields will help us take this into account.
But in truth the idea originates in a nice little problem suggested by Tom Johnson

[9] whose solution was exposed in Zürich in 2002 [1].

Remark 21. It is possible to tile an interval with motif A = {0, 1, 4} and some of its
(binary) augmentations, that is to say with A, 2A, 4A. . .

The smallest solution, as Johnson found by hand, is

({0, 1, 4} ⊕ {0, 2, 8, 10})⊕ ({0, 2, 8} ⊕ {5})

which tiles an interval of length 15.

2Say we compute Φ8 × Φ9 = 1 + x3 + x4 + x6 + x7 + x10 or better still (because of (T2))

Φ8×Φ9×Φ72 = 1+x3+x4+x6+x7+x10−x12−x15−x16−x18−x19−x22+x24+x27+x28+x30+x31+x34

To turn this into a 0-1 polynomial is not obvious (multiplication by 1 + x12 should be avoided as the
resulting motif cannot tile because of (T1); one of the simplest solutions is to multiply by

(
1− x3 + x6

)
×(

1− x6 + x12
)
).
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Figure 6: Johnson’s shortest solution

Now it happens that all solutions found by computer exhaustive search ([15]) have a
length which is a multiple of 15. Johnson asked if this was always true, and why.

Theorem 22. [1] Any solution of Johnson’s problem has a length which is a multiple
of 15.

The answer is essentially contained in this result :

Proposition 23. [Amiot, 2002] The polynomial J(x) = 1 + x + x4 divides 1 + x + x2 +
. . . xn−1 in F2[x] if, and only if, n ∈ 15N.

The link with the original equation uses the Frobenius automorphism x 7→ x2, which
is a Galois automorphism of any field of characteristic 2 over its prime field F2, as

Lemma 24. J(x2) = (J(x))2 in F2[x], and more generally J(x2p
) = (J(x))2p

.

The two last results easily imply theorem 22. Again details can be found in the Annex
and in [1].

This kind of result definitely warrants an interest in rhythmic canons in a finite field.
First we must make sense of the notion.

3 Rhythmic canons in Fp

3.1 Local to Global Philosophy

3.1.1 Making sense

Observe that all fields share the elements 0 and 1. This means that an equation between
0-1 polynomials makes sense in all K[X], for any field K. We do not mean that it is
true in each field : for instance

(1 + x2)
2 × (1 + x) = 1 + x + x4 + x5

is true in all fields of characteristic 2, but false in the field with 3 elements, or in the 〈〈real
world 〉〉, e.g. R[x]. We just state that such an equation can be written in all polynomial
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rings K[x], as a kind of 〈〈well-formed expression 〉〉, and then one may check whether it is
true or not.

Next we start from such an equation, true in R[x] and hence in Z[x].
We can canonically project it in Fp[x] by reducing all components modulo p. Thus

the equation remains true in all fields, as a field K includes a prime field which is either
Q or a Fp.

Let us summarize this in the following :

Proposition 25. If an identity between 0-1 polynomials is true in Z[x], then it is true
in all Fp[x].

This is useful for proving that a rhythmic motif does not tile: as in Johnson’s problem,
where it was necessary that J(x) = 1 + x + x4 divided 1 + x + . . . xn−1 in F2[x].

This raises the converse question: knowing that such an identity is true in all, or
several, Fp[x], is it possible to retrieve the same identity in Z[x] ? This is a kind of 〈〈 local
to global 〉〉 philosophy, like Hasse’s theory on quadratic forms. It is also reminiscent in
the category context of Yoneda’s philosophy, which may be relevant to mathemusical
analysis as argumented in ([14]).

3.1.2 From finite fields back to Z

The answer to the question above is positive:

Theorem 26. Let A(x), B(x), C(x) be 0-1 polynomials. Then the equation

A(x)×B(x) = C(x)

holds in Z[x] if and only if it holds in all Fp[x].

Remark 27. This theorem can be spelled with 〈〈 . . . in K[x] for all (finite) fields K 〉〉.
Indeed it is enough that (T0) holds in several finite fields.

Also this can be generalized to more complicated equations, with any number of
sums (not differences) and products.

This theorem is not difficult, it was stated and proved in [1]. A proof is given in the
annex.

3.1.3 An alternate condition

It is possible to relax slightly the hypothesis of the above theorem, just checking the
identity in a single finite field and checking also the number of non zero terms in each
polynomial:

Proposition 28. Let A(x), B(x), C(x) be 0-1 polynomials. If A(x) × B(x) = C(x)
holds in Fp[x] for a given prime p, and it is true in R for the special value x = 1, then
it is true in Z[x].
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The additional condition with x = 1 just ensures that there are no cancellations (the
sum A + B is direct and A⊕B = C). A detailed proof is left to the reader.

Indeed x = 1 may be replaced by any x = ε > 0. This is mentioned here because for
integer values of x, like x = 2, one gets interesting numbers, like Mersenne numbers (or
more generally repunits).

All this suggests a kind of local (in the sense of arithmetics) definition for rhythmic
canons:

Definition 29. We will say that rhythmic motif A tiles modulo p iff (T0) holds for
A(x) (and some 0-1 polynomial B(x)) in Fp[x].

3.2 The special case of F2

3.2.1 Is F2[x] the set of 0-1 polynomials?

There is an obvious bijection between (the subset {0, 1}[x] of) 0-1 polynomials and the
ring F2[x]. Unfortunately this map has no structure: it does not always map sums onto
sums, or products onto products, as we have seen on the above example. Indeed it only
works when there is a canon situation!

To put it in another way, the natural injection

F2[x]
i→ {0, 1}[x] ⊂ Z[x]

is not the reciprocal of the canonical ring projection

Z[x]
π2→ F2[x].

In a way, the problem of rhythmic canons is the exploration of this deficiency.

3.2.2 A strong result

We study the question of tiling modulo 2:

Theorem 30. (Galois)
Any polynomial not vanishing in zero divides xn − 1 in F2[x], for some large enough

n.

Corollary 31. Any rhythmic motif tiles modulo 2.

Let us explain here the gist of Definition 29:

• Musically speaking, it means that any (finite) rhythmic motif generates a gen-
eralised kind of canon, whence we allow an odd number of notes on every beat.
This is a weaker condition than tiling with exactly one note per beat, much weaker
indeed as the last theorem shows.
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Figure 7: a tiling modulo 2

• Mathematically, it means that if A = {0, a1, . . . , ak−1} is a set of integers, there
exists B ⊂ N, n ∈ N such that

A×B 3 (a, b) 7→ a + b ∈ {0, 1, 2, . . . , n− 1}

is onto, and every element in {0, 1, 2, . . . , n− 1} has an odd number of preimages.

B is defined by the polynomial quotient of xn − 1 by A(x) × (x − 1) in F2[x], for a
suitable n provided by Theorem 30. Such a polynomial B(x) will have 0-1 coefficients,
as these are the only numbers available in the field F2! It is possible to actually compute
the smallest possible n – this is implemented in the procedure completeModulo of the
canonCrawler.

In the language of multisets introduced by [4] it just means that the sum A + B is
a multiset with odd weights. Figure 7 is an example of such a tiling modulo 2, with
A = {0, 1, 4}. A does not tile the integers as can be seen directly (or from the fact that
condition (T1) does not hold). This example can be downloaded and heard as a midi file
on [21], as all examples in this paper.

Remark 32. Theorem 30 is also true in Fp. But the construction fails for moduli

greater than 2, as the quotient
1 + x + . . . xn−1

A(x)
need not have only 0-1 coefficients.

Indeed, for the same example as above but p = 3 we find that

x39 − 1

(x− 1)(1 + x + x4)
= 1+x2+x5+2 x6+2 x7+2 x8+x9+x10+x11+x12+2 x13+x14+2 x15+x16

+x17 + 2 x18 + 2 x22 + 2 x23 + 2 x24 + 2 x25 + 2 x27 + 2 x29 + 2 x30 + x32 + x33 + x34

At that point, it remained to explore the other moduli in order to find sufficiently
stringent conditions for a rhythmic motif to tile the line. Let it be enhanced again that
when one uses Theorem 26 in order to prove that A tiles, one assumes that the outer



16 E. A

rhythm B is the same, for all moduli p (involved). So even if we proved that a rhythmic
motif A tiles in all Fp, it would not be sufficient to ensure that A tiles in the real world.
As it happens this makes a great deal of sense, as shown by Theorem 34 below, which
greatly surprised the author.

3.3 Tiling in Fp

3.3.1 Strange digits

We mention a strange feature which is connected with condition (T1). When applying
Theorem 30, it often turns out that 1 is a root of A(x) modulo p. Indeed, the multiplicity
of 1 may be large.

Theorem 33. Let A be a 0-1 polynomial which tiles with period n, and p a prime
factor of n. Then

• let m be the multiplicity of 1, as a root of A(x) in Fp[x]; then the p−adic repre-
sentation of m contains only digits which are 0’s and p− 1’s.

• The number of non zero digits is the multiplicity of p (the p−adic valuation) in
the integer A(1) ∈ N, which is the number of notes of the rhythmic motif (this is
really another way to express condition (T1)).

Let us examine an example with one of the most recently found Vuza canons (see
Fripertinger’s paper in the present proceedings) :

A = {0, 4, 8, 9, 10, 18, 26, 40, 44, 46, 54, 62, 63, 72, 76, 80, 82, 98}

tiles with period 108. Modulo 3, 1 is a root of A(x) of order 20 (meaning (x − 1)20 is
a factor of A(x) in F3[x]). But in base 3, 20 reads as , whose digits are 0’s and 2’s,
and the number of 2’s is the multiplicity of the base, 3, in A(1) = 18 = 32 × 2.

3.3.2 The general tiling theorem

It seemed reasonable to expect that some conditions would be required for tiling modulo
some prime number p. On the contrary:

Theorem 34. Any rhythmic motif tiles in Fp, for any prime p.

This is mainly Theorem 30, with the addition of the following trick that we called
〈〈Unfolding 〉〉Lemma:

Lemma 35. Let P ∈ N[x] be polynomial with non negative integer coefficients; then
for any integer n > 1, P is congruent to a 0-1 polynomial modulo xn − 1:

P (x) ≡ P̃ (x) ∈ {0, 1}[x] mod (xn − 1).
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Theorem and Lemma are proved in the annex.
An example of the lemma : let P (x) = 1+3x2 +2x5 and n = 5, then we can 〈〈unfold 〉〉

3x2 7→ x2 + 2x7 7→ x2 + x7 + x12. Ultimately,

P (x) ≡ 1 + x2 + x5 + x7 + x10 + x12 mod x5 − 1

Figure 8 is an example, tiling modulo 3 with A = {0, 1, 3} and period 24.
Contrarily to the case p = 2, this is not tiling an interval {0, 1 . . . , n− 1}, reduction

modulo n is mandatory, and the result is not necessarily minimal.

Figure 8: a tiling modulo 3

This opens intriguing possibilities in music; perhaps when several voices compete on
the same beat, they might be arranged to play octaves or unisons, or some components
of the spectrum of the base note.

It also means that one cannot use finite fields for proving that a given motif tiles,
only to prove that it does not, as in Johnson’s problem. The unexpected results found
along the way made the adventure worthwhile, though.

4 Annex

4.1 Proof of the Fundamental Lemma 9

1) We recall condition (T0) : A(x)×B(x) ≡ 1 + x + x2 + . . . xn−1 mod xn − 1.
2) Let us denote the unit circle in C by S1. There is a map Fn : Z[x]/(xn− 1) → S1

associating to a polynomial A(x) defined modulo xn− 1 the set RA of the roots of A(x)
which are in µn, the group of nth roots of unity.

The main point is that the last map is independent of the choice of a representative
of A(x) modulo xn − 1. Indeed, ξ ∈ µn is a root of A(x) ⇐⇒ it is a root of A(x) +
Q(x)(xn− 1) for any Q ∈ Z[x]. Also it must be noted that when (T0) holds, the disjoint
union RA ∪RB is equal to µn \ {1}.
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I stress this map because it enables a better understanding of the stability of tiling
under multiplication by some invertible p (mod n): pA corresponds to the polynomial
A(xp), and the map ξ 7→ ξp is an automorphism of the group µn, leaving RA stable.

Indeed it is the restriction of one of the Galois automorphisms of the cyclotomic
field Q[e2iπ/n] (the cyclotomic field, decomposition field of xn − 1, and hence of all the
cyclotomic polynomials involved) which is the deeper reason of the following lemma (a
more precise version of Lemma 10):

Lemma 36. If ξ is a root of order d | n, then so is ξp for any p coprime to n.

Proof. (ξp)d = (ξd)p = 1, hence the order of ξp is a divisor of d.
Conversely, if (ξp)e = 1 then d must divide pe and by Gauss Lemma (d being a

divisor of n, is coprime with p), d divides e. 2

This means that RpA = RA, as stated in Proposition 11.
In order to finish the proof of Lemma 9, we still need to show that (T0) holds for pA,

i.e.

A(xp)×B(x) ≡ 1 + x + x2 + . . . xn−1 mod xn − 1

Proof.
1) A(xp) is still a 0-1 polynomial (mod xn − 1) with exactly |A| = A(1) terms

(monomials). This is essentially true because a 7→ pa is an automorphism of Z/nZ: xpα

and xpβ must have different residues modulo xn − 1 when α 6= β mod n.
2) The product A(xp)×B(x), even taken mod xn − 1, has at least n− 1 roots in C,

namely RA ∪RB = µn \ {1}. This is because RpA = RA.
3) Now this polynomial has degree at most n − 1 after reduction mod xn − 1; the

constant term is known to be 1, hence it is exactly 1+x+x2 + . . . xn−1, which completes
the proof. 2

4.2 Generating other canons

In this section we prove Theorem 14 in the different cases enumerated in section 2.3.

Remark 37. It is not necessary to prove that condition (T1) is preserved, as all these
manipulations deal with effective canons and hence (T1) is always true by the theorem
B1 in [4] (see Theorem 8). So it will be left as an exercise to the reader.

4.2.1 Affine transform

As we have seen above, the sets RpA, SpA are exactly the same as RA, SA: hence (T2) is
true for pA whenever it is true for A.

4.2.2 Dilatation

For convenience let us state again the definition in terms of polynomials :
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Definition 38. The dilatation of canon

A(x)×B(x) ≡ xn − 1

x− 1
(mod xn − 1)

by a factor p is the canon

Â(x)× B̃(x) ≡ xpn − 1

x− 1
(mod xpn − 1)

where Â(x) = (1 + x + . . . + xp−1)× A(xp) and B̃(x) = B(xp).

It suffices to list the sets of roots of unity of Â(x), B̃(x). It is enough to prove that (T2)
is preserved in the case when p is a prime number. Let us consider a cyclotomic factor
Φd of either A(x) or B(x).

Lemma 39. If p is coprime with d, then Φd(x
p) = Φd(x)× Φpd(x).

If p divides d then Φd(x
p) = Φpd(x).

This classical Lemma is used in [4], it is easy to prove by considering the order of a root
of Φd(x

p) or by using the generating formula

Φ(n) =
∏
d|n

(xd − 1)µ(d) where µ is the Möbius function.

Hence when proceeding to the dilatation of canon A ⊕ B, the cyclotomic factor Φd is
replaced by Φpd when p divides d; on the other hand, when p and d are coprime, the

factor Φd remains and Φpd is added to the list of cyclotomic factors. In the case of Â(x)

we also have to include the new factor Φp (see the definition of Â(x)). To sum it up:

Corollary 40. R eB = (p×RB) ∪ (RB \ pN) and R bA = {p} ∪ (p×RA) ∪ (RA \ pN).

Now it is easy to check that condition (T2) is true for B̃ (resp. Â) if and only if it is
true for B (resp. A): if q is a prime, we have

qα ∈ S bB ⇐⇒
{

qα ∈ SB (q 6= p)
qα−1 ∈ SB (q = p)

.

Hence the products (pγ)qαrβ . . . occur in S eB if and only if the products (pγ−1)qαrβ . . .
already are in SB.

The case of Â is similar, with special consideration for the lone factor p1 = p ∈ S bA.
This completes the proof of the dilatation-part of Theorem 14. 2
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4.2.3 Repetition (concatenation)

• First we prove that concatenating with itself a rhythmic motif that tiles a canon, yields
a new rhythmic motif that tiles also:
Proof. Assume A⊕B = Z/nZ and let 1 < k ∈ N. It is not difficult to prove the claim
reasoning on integers, or better still on a commutative diagramm with the canonical
projections Z → Z/nZ, Z → Z/(kn)Z. For consistency with what follows we will give a
slightly less elegant proof with polynomials instead. So we start from condition (T0):

A(x)×B(x) ≡ xn − 1

x− 1
mod xn − 1 ⇐⇒ A(x)×B(x) =

xn − 1

x− 1
+ Q(x)× (xn − 1).

Choose the representative A minimal (A ⊂ {0, 1 . . . n − 1}) and define A repeated k
times by A′ = A⊕ {0, n, 2n, . . . , (k − 1)n}. Then

A′(x) = A(x)× (1 + xn + x2n + . . . x(k−1)n) = A(x)
xkn − 1

xn − 1
.

Now from equation (T0) we get

A′(x)×B(x) =
(xn − 1

x− 1
+ Q(x)× (xn − 1)

)xkn − 1

xn − 1
=

xkn − 1

x− 1
+ Q(x)× (xkn − 1).

which is what we claimed. 2

• Now we prove that the concatenation operation preserves condition (T2).

Proof. We begin with the polynomial Mn,k = 1 + xn + x2n + . . . x(k−1)n =
xkn − 1

xn − 1
, very

important for musicians, as it is the modelisation of any metronomical rhythm. It has
been shown recently that products of two such metronomes tile ⇐⇒ (T1) and (T2) are
satisfied [12], which is a corollary of the current Theorem.

Algebraically though, Mn,k is a just a product of cyclotomic polynomials:

Lemma 41. Mn,k is the product of cyclotomic factors Φd with d dividing kn, but not
n.

This lemma easily results from the definition of Mn,k as a quotient and the decomposition
of xn − 1 in a product of cyclotomic polynomials.

We infer that A′(x) has as new roots of unity those of such orders d:

RA′ \RA = {the roots of order d, with d dividing kn, but not n}.

It is enough to prove that (T2) is preserved when k = p is a prime (by iterating the
process one gets the more general case, dividing the period into several steps instead of
a single one). Summarizing:

Lemma 42. RA′ contains RA. If n = pvp(n).m, m coprime with p, then the only
additional elements have the following form: pvp(n)+1qβ . . . | pn
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We investigate the relationship between RA′ and SA′ in order to check if (T2) is still true;
there are two cases to discuss:

• If pα ∈ SA then pα+1 will stand in SA′ only when α = vp(n) i.e. pα is a factor
of n of maximal exponent, as we have just seen. We check in that case for new
factors pα+1qβ . . . in RA′ , and indeed they are here, as pαqβ . . . divides n, hence
pα+1qβ . . . divides pn but does not divide n, by the maximality of α which means
that pα+1qβ . . . ∈ RA′ (cf. Lemma 42).

• Consider another element qβ ∈ SA, q 6= p. Then in addition to factors qβrγ . . .
which are (by condition (T2), assumed for A) already in RA and hence in RA′ , we
must consider eventual qβpαrγ . . . for pα, rγ . . . ∈ SA′ . But this is the case only if
α − 1 = vp(n), i.e. pα−1 is the greatest power of p dividing n (Lemma 42 again).
Then pα−1, rγ . . . ∈ SA and hence by Lemma 42 again

qβpα−1rγ . . . ∈ RA ⇐⇒ qβpαrγ . . . ∈ RA′

which ends the proof that condition (T2) is preserved by concatenation ; it works in the
same way for the reverse operation of ‘collapsing’. 2

• Next we consider a cyclic canon, that is to say A + d = A mod n, and prove that
A is collapsible, meaning this is reducible to a smaller canon A′ ⊕B = Z/mZ.
Proof. We can assume that d is a divisor of n (else replace d by m = gcd(d, n), as

nZ− dZ = {an− bd | a, b ∈ Z} = gcd(n, d)Z = mZ

and thus A = A + (un + vd) = A + m is m−cyclic). Let p = n/d (we could assume
that it is a prime factor of n, but is not necessary). Again, the proof is possible within
number sets:

Z = A⊕B ⊕ nZ = B ⊕ (A⊕ nZ) = B ⊕ (A′ ⊕mZ) = A′ ⊕B ⊕mZ,

but computation with polynomials is an instructive alternative. So we start from

A(x)×xn/p = A(x)×xd ≡ A(x) mod xn−1 i.e. A(x)×xd = A(x)+Q(x)× (xn−1).

We infer

A(x) = Q(x)× xn − 1

xd − 1
= Q(x)× (1 + xd + . . . x(p−1)d).

We choose A′(x) = Q(x) = A(x)× xd − 1

xn − 1
: we have condition (T0) with period d, as

A′(x)×B(x) =
xd − 1

xn − 1
×A(x)×B(x) =

xd − 1

xn − 1
×

(xn − 1

x− 1
+Q′(x)×(xn−1)

)
≡ xd − 1

x− 1
mod xd−1.

It only remains to prove that A′(x) is 0-1. Remember that A′ is defined by

A(x)× xd = A(x) + A′(x)× (xn − 1)
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with d < n and A(x) a 0-1 polynomial of degree < n.
Assume A′ is not 0-1: let uxk be the greatest degree monomial of A′ with coefficient

u 6= 1. Now we compute the coefficient of xn+k in A(x) × xd which is u, as d◦A < n.
But A(x)× xd is a 0-1 polynomial: contradiction.

The proof is now complete. 2

As stated in the main text, this process A 7→ A′ of collapsing can be iterated as long
as the canon is not acyclic, and hence until we get an acyclic canon (maybe interchanging
A, B sometimes), or the trivial canon {0} ⊕ {0} in the case of a fully collapsible canon.

4.3 Proof of 〈〈Local to Global 〉〉 Theorem 26

Proof. We consider the case of equation A(x) × B(x) = C(x) for instance. An
equality between polynomials in Z[x] holds iff it is true for a great number of values of
x. Here we assume it is true that A(a)B(a) ≡ C(a) mod p for all a, p. Hence for all
a ∈ Z, A(a)B(a) = C(a) in Z (Chinese Remainder Theorem), hence A(x)×B(x) = C(x)
in Z[x]. 2

A musician would not need the CRT for a proof: he would notice that if the number
of notes on a given beat of a canon is ≡ 1 mod p for all p, then it must be exactly 1.

4.4 Tiling modulo p

4.4.1 Proof of Theorem 30

Proof. Though we first use it for p = 2, it is true for any prime p. Consider an irreducible
[in Z[x]] factor A(x) of P (x). It is completely decomposed in an extension, namely
Fq = Fp[X]/(A(X)). This field is finite and of characteristic p, as indeed q = pd◦A. Since
by Lagrange theorem all (non zero) elements of this field satisfy aq−1 = 1 and A has
only simple roots (a finite field is perfect) we have A(x) | xq − 1 [this stands in Fp[x]].

This enables to decompose all factors of P (x). But there is the question of multiple
roots. Say A(x) | xn − 1; we get

A(x)k | (xn − 1)k | (xn − 1)pα

for pα > k. But we recognize a power of the Frobenius automorphism (extended to
Fp[x]), and

(xn − 1)pα

= xn.pα − 1 = xm − 1 in Fp[x].

The LCM of such xm−1 for all irreducible factors of a given polynomial divides some
xN − 1, and we have found an exponent N with P (x) | xN − 1. 2 This
proof is constructive. An improvement of the algorithm checks whether (T0) is verified
for divisors of N till the smallest solution is reached.

4.4.2 Proof of corollary (every motif tiles a canon modulo 2)

Now let p = 2: all polynomials are 0-1 polynomials.
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Let A be an inner rhythm. We want (T0) mod 2, i.e. we want A(x) to divide
xN − 1

x− 1
,

we just have to set P (x) = A(x)× (x− 1) in the above computation. This proves that
any A(x) (non vanishing in 0) divides some 1 + x + x2 + . . . xn−1 for some n. The
quotient is a 0-1 polynomial, having no choice, and this proves that any rhythmic motif
tiles modulo 2.

4.4.3 Strange digits

Proof. We begin with a lemma used in [4].

Lemma 43. Φk(1) =

{
p if k is a power of p
1 else.

This lemma is well known and easy to prove from most definitions of cyclotomic poly-
nomials.

Hence 1 is a root of A(x) modulo p, i.e. p | A(1), iff A(x) admits a factor Φpα , pα | n
(in the proof of condition (T1) in [4] it is made clear that the value of any (even-
tual)(monic) non-cyclotomic factors in 0 is ±1, because when counting the total multi-
plicity of a prime factor p in A(1) × B(1) = n, which is the total multiplicity of root 1

in
xn − 1

x− 1
modulo p, it accounts exactly for all Φpα where pα | n).

The multiplicity of 1 in

Φpα(x) = 1 + xpα−1

+ x2.pα−1

+ . . . + x(p−1).pα−1

is computed from the following identity, which is a consequence of Frobenius auto-
morphism (modulo p)

Φpα(x) = (1 + x + x2 + . . . xp−1)
pα−1

=
(xp − 1

x− 1

)pα−1

=
((x− 1)p

x− 1

)pα−1

∈ Fp[x].

Hence this multiplicity is pα−1(p−1), and this happens for several different α’s (whenever
pα ∈ RA).

The sum of these multiplicities expressed in base p is
∑

pα∈RA

(p− 1)pα−1: it has digit

p− 1 only at positions α and 0’s elsewhere, which proves the first point.
Now the number of digits p − 1 is also the number of factors Φpα in A(x), and this

is the multiplicity of p in |A| = A(1) by condition (T1). 2

This theorem is devoid of any interest when p = 2, as all binary numbers are obviously
written with 0 and 1 only.

4.4.4 Applications to tiling modulo p

Theorem 30 is true modulo any prime p without modification. So there exists, for all

A, a polynomial B(x) =
xn − 1

A(x)(x− 1)
∈ Fp[x], unfortunately its coefficients are usually

different from 0,1.
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As we only need a 0-1 member of the class of B(x) mod xn − 1, it is sufficient to
prove the Unfolding Lemma.

But this relies on iterating a simple transformation (hence the idea of ‘unfolding’):
write B(x) as a polynomial with coefficients in N, then apply

If a>1, a*x^m -> (a-1)x^m + x^(n+m)

This transformation does not change B(x) mod xn − 1, as it adds a multiple of xn − 1,
but it decreases all coefficients greater than 1. So after a finite number of iterations
(at most the sum B(1) of all coefficients of B) we get a 0-1 polynomial, congruent to
B(x) mod xn − 1. 2
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