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2 EMMANUEL AMIOT ST NAZAIRE, FRANCE

ABSTRACT

Rhythmic canons were introduced to the musical world with D.T. Vuza’s seminal papers in PNM twenty
years ago [40]. Since the original exposition, this important notion has known many developments and
generalizations. The present self-contained paper is intended both as a reference on all presently known
theoretical results, and a catalog of the different methods currently in use for the production of diverse
rhythmic canons, whether for compositional or for theoretical purposes.

1. WHAT IS A RHYTHMIC CANON?

The ambitious purpose of this paper is to fill in the gap between theory and practice of rhythmic
canons. There is indeed quite a distance between musical canons, even rather intellectual ones like
Bach’s in the Goldberg Variations or the Art of Fugue, and Vuza canons such as they are used by some
modern composers.

The basic idea of a canon is that some recognizable pattern is repeated with different offsets (usually
with different instruments, or at least different voices). Sometimes this pattern (henceforth called
the motif) is modified (say augmented or retrograded). For rhythmic canons, we need only consider
the occurrences of the musical events (notes, for instance), regardless of pitch or timbre or dynamics.
Hence, with a motif A, transformations 7,47 € I (that may be only offsetings, i.e. translation in time),
a canon will be the reunion C of the transforms U;e; 7;(A).

Say for simplicity’s sake that the fundamental beats are modelled by integers, e.g. some subset D C Z.
If a motif is identified with its characteristic function 14 : D — {0, 1}, then the superposition of all its
copies appears as a sum: C = Y. 1.,(4). For instance, in the common case when all transformations
are just different offsets in time, ie. 7, = T, = (t — t + i), we get Y . 144;, which is in general the
characteristic function of a multiset not a set.

Example 1. Let M be the tango or habanera rhythm {0,3,4,6}. An infinite canon can be made by
offseting M by -2 and 0 and repeating the sequence with period 8:
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FIGURE 1. A canon with a tango motif

Notice that C(4) = C(6) = 2 while C(5) = 0, for instance. A neater canon can be made, without gaps
or coincidences, by using also retrogradation.:
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FIGURE 2. A mosaic, with the tango motif M and its retrogradation R
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Obviously, if one chooses to consider as possible beats all possible quavers or semi quavers (say) in a
definite time-span, then most musical canons in the classical sense will feature from nil to several notes
on each beat. We can try to specialize more (theoretically) interesting kinds of canons: we will call
them (following [43]) coverings and packings. A covering is a canon where every available beat features
at least one note, maybe more. One gets a trivial covering by starting a new copy of the motif on every
beat. In other words, with the above notation V¢t € D,C(t) > 1.
A packing, conversely, is a canon where there is never more than one note on every possible beat. With
the above notation, ¥Vt € D,C(t) < 1. A trivial packing is made of only one (or even nil!) copy of the
motif.
Covering is not only trivial, but lumpy (several notes on the same beat); packing conversely leaves
many gaps.
From a mathematical point of view, the obvious way to get a well-defined and interesting problem? is
to demand one and only note per beat, like in example 2. This is called a tiling, i.e. a mosaic with
copies of one motif, maybe allowing some deformations (retrogradation, augmentation among other
possibilities, apart from translation in time). Hence

Mosaics/tilings = coverings N packings: Vt € D,C(t) = 1.
Most studies (especially on the pure mathematics side) have been devoted to the simplest case of tiling
with just one tile and some of its translates, i.e. mosaic rhythmic canons by translation. In the one
dimensional case (filling every beat with one and only one note) it is equivalent to the problem of tiling
Z, see [28, 40]; if the tile is finite, it is equivalent to the tiling of a cyclic group Z,, as we will develop
infra in Thm. 2. See already a simple example on figure 3:
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FIGURE 3. A mosaic rhythmic canon designed by George Bloch for a greeting card.

This case, the simplest, is already quite formidable: a number of likely conjectures have been disproved,
and several open problems remain, among which finding some (easily computable) sufficient and nec-
essary condition for a motif to tile. This case will make the bulk of this paper. On the other hand,
there are very few results about other kinds of rhythmic canons:

(1) Wild’s ‘trichord theorem’ about tiling with three-note motifs and their retrogrades.

(2) My result about ‘tiling modulo p’, a special case of covering with translates of a motif.

(3) Other coverings with some cultural relevance in central african cultures are asymmetric rhythms,
studied by [20], with enumeration results about canons with inner periods (non Vuza canons,
cf. infra).

(4) Hajos/deBruijn’s 1950 theorem about periodic tilings can be generalized to tilings with any
finite number of motifs.

(5) A necessary condition can be given for a very specific species of tiling by augmentation [21, 34, 3]
by way of Galois theory on finite fields.

(6) In a limited number of cases, autosimilar melodies [2] enable to devise tilings by augmentation,
even in several dimensions (see section 3.3) by affine transforms.

1See however [10] for coverings in nzakara harp canons, and [20] for an unexpected occurrence of non Vuza canons.
Another promising line is to impose a given number of notes on each beat, or a condition on this number. See for instance
4.2 below, or [32].
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(7) Sundry efforts in programming yield practical results [21, 34, 42, 13], but without significant
theoretical import.

It must be pointed out, however, that in the domain of rhythmic canons, the interplay between compu-
tation and theory is twofold: not only does the theory help provide better programs, but computational
efforts conversely allow progress on difficult mathematical problems, see among many other examples
[5, 25], the algorithm section below, and Andreatta’s article in this issue of PNM [?].

2. TILINGS OF THE LINE

In this section, we will study the mosaic kind of rhythmic canons, which are modelized as tilings of the
integers. If A C Z is the motif, and B is the set of all offsets, we wish for the translates A +b,0 € B
to partition the integers, i.e. for the map

+ap: AXxB—Z
(a,b)—a+b

to be bijective, which can be written as
7=A&B

2.1. Theory.

2.1.1. From tilings of R to tilings of Z to tilings of Z,,. It must be mentioned briefly that ‘real’ tilings,
i.e. tilings of the real line, by translation of a single (bounded) motif, can be essentially reduced to
tilings of the integers (see [28, 40]). Conversely, any tiling of the integers Z = A @ B can be turned
into a tiling of the real line R = (A +[0,1) ) & B.

Another general result means that we should focus on tilings with a finite motif, since otherwise the
tiling may literaly contain anything:

Theorem 1. ([33]) Any direct sum of two finite sets (of integers) can be extended to an infinite direct
sum decomposition of Z: If A C Z, B C Z are finite and A+ B = A @ B,? then there exist oversets
ADA BDO>BuwithZ=A&B.

Now the main basic result introduces a period for any tiling with a finite motif. It goes back to Hajos and
deBrujin, whose original proofs are perhaps not up to modern standards (see instead [33, 29, 15, 28]).

Theorem 2. For any tiling of the integers 7Z. = A & B by translation of the finite motif A, there exists
some period n > 1 for the offsets B, i.e. B = C @ (nZ) for some finite set C C Z.

This essential result links tilings with combinatorics, since all significant factors are now finite.

As pointed out by [28], Ex. 1, the result no longer stands if other transformations are allowed: totally
non periodic tilings can be constructed from a motif and its retrograde. We can see on the picture
below how the range [0, 8] can be tiled in two ways by {0,1,5} and its retrograde, and these two new
tiles can be used in turn, to randomly (and non periodically) tile the whole line (fig. 4).

However, the gist of the proof can be preserved® to get a more general though weaker statement:*

Theorem 3. For any tiling of the integers by translation of a finite number of finite motifs Ay, ... A,,
there exists a periodic tiling with the same motifs.

2Meaning that if a + b= a' + b with a,a’ € A,b,b/ € B, thena=a’ and b=1'.

3The idea is to consider the tiling as a work in progress: at a given step, i.e. when all integers up to some point are
covered, there is only a finite number of possible configurations — up to translation of course; by the the pigeon-hole
principle, at least one configuration must occur more than once, which enables to construct a periodic tiling by repeating
the sequence between two such occurrences.

4An even more general form appears in [28], Thm. 5.
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M={0,1,5} .. .

R ={0,4,5) - ..
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FIGURE 4. Two tilings with retrogradation of [0, 8] with {0, 1,5}

T —

FIGURE 5. Aperiodic tiling with retrogradation

Starting from equation Z = A ® (C @ nZ), we get by reduction modulo n
Z,=A®C

where A, C are the sets of residues of the elements of A and C in the cyclic group with n elements
Z,. Moreover, the projection from Z to Z, induces bijections A — A,C +— C since its kernel is
nZ. So in essence, tiling the line is the same as finding a decomposition of the generic cyclic group
Zy as a direct sum of two subsets. Conversely, given some decomposition Z, = A @ C, a rhythmic
canon emerges by choosing arbitrary integers whose classes modulo n constitute A, C. Consider again
example 3: it is a tiling of Z by {0,4,5,9} with offsets 16Z & {0, 6,8, 14}, which reduces modulo 16
to Z1s = {0,4,5,9} @ {0,6,8,14}.> Other canons would yield the same projection, say with motif
{4,9,16,21} and offsets {0, 8,22,30} & 16Z.
Clearly, musically this is a very different canon from Bloch’s. Equally clearly, both can be trivially
deduced from their common projection on Z;s. Henceforth we will study the equation in the cyclic
group, written for simplicity

L, =A®DB (E)
The motif A is also called the inner voice, and the set of offsets B is the outer voice. This last reduction
is sometimes considered too drastic by some musicians; it is mandatory, however, if one is to classify
and construct canons with a given period.
The first conjecture about the decomposition problem in equation (£) was formulated by Hajos around
1948: he thought that one or the other factor had to be periodic, meaning 4p,0 < p < n, A=A+ p
(or the same with B). An equivalent formulation, reminiscent of Thm. 2, is A = A’ @ pZ,, meaning
that A is generated by a submotif A, translated by p and all its multiples (in particular, p must be a
strict divisor of n).

Example 2. In the above tiling of Zis used by G. Bloch, the second factor {0,6,8,14} has period 8
and can be written {0,6} & {0, 8}.

In his seminal paper [40], D.T. Vuza begins by proving this conjecture for n = 12, which is of course
a vital case for musicians — if classes modulo 12 model pitch-classes instead of beats, then this means
that in any Boulezian multiplication of chords that yields a tiling of the chromatic aggregate, one of the

SWe denote identically an integer and its class modulo n, the context usually making clear which is which.
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chords is a limited transposition mode in Messiaen’s (generalized) sense. Vuza eventually managed all
by himself the tour de force of rediscovering and proving the results of the whole generation of math-
ematicians who had worked on Hajos’s conjecture (the connection was first noticed by M. Andreatta
[9]). The first main result in Thm. 4 below is proved by providing a counter-example, the second is
quite difficult:

Definition 1. A Vuza canon® is a counterezample to Hajos’s conjecture, i.e. a rhythmic canon Z, =

A @ B where neither A nor B is periodic.

I would like to point out that the notion of Vuza canons is musical, inasmuch as a canon with (say)
a periodic outer voice is heard as the repetition of a shorter canon (with a shorter outer voice). This
leads to a useful decomposition process, as we will see later.

Theorem 4.

(1) There exists Vuza canons.
(2) Vuza canons only exist for periods n which are not of the form

n=p*n=pqn=pq,n=pn=rpys
where p,q,r, s are different primes.

A Z, with n of the form above is often called, after Hajos, a “good group”, the other cyclic groups
are “bad”. The smallest bad group is Zrs, the next ones occur for n = 108,120, 144,168,180...".
Production of Vuza canons is discussed below, especially in section 2.3.

FIGURE 6. A Vuza canon with period 108 pictured on a torus.

In some older papers, this term specifies those canons provided by Vuza’s algorithm; this is no longer the case and
we call ‘Vuza canons’ what he himself called ‘Rhythmic Canons of Maximal Category’.
Sloane’s sequence A102562.
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2.1.2. Transformations of rhythmic canons. Before we list the different transformational tools in use,
it is necessary to pin down what is meant by identical canons. For instance, since the outer voice B is
actually heard as B + nZ musically, there are many equivalent possible definitions of B. Also, notice
that if A ® B = Z, then any translate of A will tile with the same B (and similarly for translates
of B). So we are really interested in classes of subsets of Z,, modulo translation. A common way
to take this into account is to consider, instead of a subset, the sequence of consecutive differences
between its elements; then the basic form of set A® is a fixed choice among the circular permutations
of this interval sequence, usually inverse lexicographical order, see [1, 9] for instance and the definition
below. Another formulation of this reduction to one representative of an orbit is the (computer science)
concept of Lyndon word, which is instrumental in the enumeration of canons achieved by Fripertinger

([17]).

Definition 2. The basic form of A € Z, is the smallest (for inverse lexicographic order) circular
permutation of the set of consecutive intervals in A, A(A) = (ag—ay, as, as, ... ar —ax_1, a; — ay) where
0<a; <ap <...a, <n are the elements of A, considered as numbers in[0,n — 1]

The basic form of a canon is the pair constituted by the basic forms of its inner and outer voices.

For instance, motif A = {0, 1,4, 5} in Zg has basic form (1,3, 1, 3).

It is worthy of note that A(A + p) is a circular permutation of A(A). Notice also that the number of
different motifs with the same basic form decreases when the motif has inner periodicities (motifs of
Vuza canons are hence maximal in that respect, see section 2.3.1 below).

As discussed supra, the reduction of the inner voice A to a subset of 7Z, is, perceptively speaking, a
little dubious: {0,1,19,34} sounds quite differently from {0,1,2,3}. But this is a price to pay for
modelization. We will see below that the inverse transformation — from reduction to a larger motif —
is the key to some enumeration problems.

Particularly after the publication of Vuza’s work, several composers have been practising with rhythmic
canons. These manipulations were formalized for implementation in musical softwares, like OpenMusic,
and led to the following toolbox:

Duality is the exchange between inner and outer voice, i.e. from A @ B = Z, we build B® A = Z,
instead.

Affine transformation is probably the less obvious of all transformations of rhythmic canons (though
it was rediscovered several times by non-mathematicians):

Theorem 5. For any canon A ® B = Z,, for any affine transformation f : x — ax + b mod n
(meaning a is coprime with n), the affine transform of A by f still tiles with B, i.e.

(aA+b)® B =17,

The proof is essentially Galois theory, as discerned already by Vuza who used this as a lemma (see also
[4]). This transformation enables to change the motif (inner voice) without modifying the schedule of its
entries (outer voice), or the reverse. On a more theoretical side, it allows a more compact classification
of Vuza canons: for instance, there are only two different Vuza canons of period 72 up to affine trans-
formation, A = {0, 3,6,12,23,27,36,42,47,48,51,71} or A’ = {0,4,5,11,24,28,35,41,47,48,52,71}
with B = {0, 8,10, 18,26,64} instead of 6 inner voices and 3 outer voices, in basic form. We will see
below that this feature is not unrelated to Z-relation and kindred topics.

Concatenation is the simplest transformation of all: it consists in replacing the motif by itself,
repeated several times. In other words, A € Z, turns into =4 ®{0,n,2n,...(k — )n} € Z,.
Strangely enough, the aural effect is very similar if the same transformation is applied to B instead. It
is easy to check that

Theorem 6. A tiles with B if and only A" tiles with B.

8nspired of course of Forte’s notion, see [30].
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Let us notice that a Vuza canon is precisely a canon that cannot be produced by concatenation of some
smaller canon. This enabled to reduce several conjectures” or features of canons to Vuza canons, since:

Proposition 1. Any canon can be produced by concatenation (and duality) from either the trivial canon
{0} @ {0}, or a Vuza canon.

Moreover, this entails a recursive construction of all tilings of finite ranges [ 0,n — 1] (i.e. without
reduction modulo n), since

Theorem 7. Any canon A@® B =[0,n — 1] can be reduced by concatenation and duality to the trivial
canon.

This was proved by G. deBruijn in [14].

Example 3. {0,1,4,5} & {0,2} =[0,7] is concatenated from {0,1} & {0,2} =[0,3], this last from
{0,1} @ {0} =[0, 1] which is a duplication of the trivial canon {0} @ {0} =[0,0].

Other cases of reducible canons include the ‘assymmetric rhythms’ of [20], whose study originates in
ethnomusicology.

Zooming and stuttering are two dual transformations. I called stuttering the act of replacing each
note or rest in the motif by k repetitions of itself.

Example 4. For instance, from {0,1,4,5}®{0,2} = Zg one gets {0,1,2,3,4,5,12,13,14,15,16,17} &
{0» 6} = Loa.

Algebraically, this means turning A into Stut(A4,k) = kA® {0,1,2...k — 1} € Zy,. This time, in
order to keep a canon it is necessary to augment the outer voice B into k B, i.e.

Theorem 8. A tiles with B if and only Stut(A, k) tiles with k B.

Quite contrary to concatenation, these operations preserve the non-periodicity of either voice, and
hence turn a Vuza canon into a (larger) Vuza canon. This has been used (in combination with the
other transformations) in order to produce hitherto unknown Vuza canons, before Harald Fripertinger
managed to enumerate all of them for periods 72 and 108 ([17]). Of course, it is equally possible to
zoom on A and stutter with B.

Multiplexing is simple a extension of stuttering: instead of building &k A®{0,1,2...k—1}, one chooses
k inner voices Ay, ... Ai_1 which tile with the same outer voice B, i.e. Ay B=A1 & B=---=17Z,,

k-l
and the new motif with period kn is A = |J (k A; + ). Again,
i=0

Theorem 9. A® kB =174, < Vi=0...k—1,A, & B=17,.

This transformation (borrowed from a rather abtruse mathematical paper on tilings, [24]) opens inter-
esting compositional possibilities, since several canons merge into a larger one while remaining audible.
The dual transformation (multiplexing the outer voice) enlarges the motif and complexifies its outer
voice.

An interesting theoretical aspect is that a kind of reciprocal stands: each canon wherein the outer
voice can be written k B is multiplexed from a canon k times smaller (see on picture 7 how the smaller
canons can be retrieved from the larger one). It was conjectured, in various contexts and by several
authors, that essentially all canons were instances of some such multiplexing; but this is not true,
as demonstrated by [38], though the smallest known counter-examples have period 900, see below
subsection 2.3.5.

Uplifting This last transformation came to light in the latest developments of the search for Vuza
canons [25]. It stems from a simple idea:

9Notably Fuglede’s conjecture, see [4, 5] for instance.
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{0,1,2,5,15,22} + {0,6,12,18}

{2x{o, 1,11} U 2x({0, 2,7} + 1) } + 2x{0, 3, 6, 9}

{o,1,11} + {0,3,6,9} {0,2,7} +{0,3,6,9}

FIGURE 7. An example of multiplexing.

Proposition 2. If A tiles Z,, then A tiles'® any larger cyclic overgroup Zy,; moreover, translating any
element of A by any multiple of n provides a motif that also tiles Zy,,.

Proof. If A® B = Z,, let A= {a1 + kan,...a, + kyn} C Zi, where A = {ay,...a,} C Z, (this
makes sense, since using the canonical projection II from Zj,, to Z, yields Il(a + kn) = a). Let also
B ={b;+ kn,b; € B,k =0...k— 1}; then it is straightforward to check that

Aa®B=17,,
considering that the sum mapping A®B > (a,b) — a+bis still injective and that #EGB #E =kn. U

For instance, from {0, 1,4,5} & {0,2} = Zg one uplifts the Bloch canon in example 3, e.g.
(0,9=1+8,4,5) @ {0,2,8,10} = Z.

This is probably what Bloch actually did in order to produce his canon. But the main strength of this
transformation is made clear when one is looking for some motif A € Z, knowing that A also tiles a
smaller group. This was instrumental in many cases in the quest for all the smallest Vuza canons, see
below in 2.2.4.

2.1.3. Length. It is of course of vital interest for a musician to predict the size of a rhythmic canon. The
one obvious piece of information is the diameter of the motif, i.e. § = max A — min A. Unfortunately,
this is of little use, since the overall length (period) n of the canon can vary widely. It is fairly easy to
get n =146 (cf. A=1{0,2,4...n—2} for some even n) and n = 24, for A = {0,}. Though Thm. 2
only yields n < 29, it was long thought that this last case n = 2§ was the upper limit, but this is not
true.

Kolountzakis first proved [23] that n can be a non linear function of §, with the construction given
below in 2.3.6; it was later proved that n may be non polynomial in § — larger that eV? for some

constant c. On the other hand, the upper bound was lowered to n < e®V°™9 a notable improvement
on 2° = e?1"2 [31] though probably not optimal.

2.2. Algebraic modelizations and advanced tools.

10T his sounds ambiguous, when A is considered as a part of Z,, not of Z; but the point of the proposition is precisely
that any subset of the integers reducing to A modulo n will also tile when reduced modulo some multiple kn of n.
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2.2.1. The zero set of the Fourier transform. Another way to look at canons is by way of the charac-
1 ifzeAd

teristic functions (or ‘distributions’) of the voices, defined by 14(z) = 0 ol
else.

This allows to take into account multisets, where notes can be repeated (and 14(z) is the number of
superposed notes) or even rational- or real-valued maps, where the value may stand for volume for
instance (the ‘Velocity’ component in MIDI format).

In terms of characteristic maps, the definition of a rhythmic canon by translation involves the convo-
lution product:

Proposition 3.
A@B:Zn g 1A*1B:]'Zn =1
(the constant map equal to 1 for any element of Z,,)

where (fxg)(z) = > o, f(k)g(x—Fk): clearly, in the case of characteristic functions, 14(k)1p(x—k) =1
whenever k € A and x — k € B, i.e. x is sum of an element of A and an element of B, and 0 else.

The main interest of this admittedly cumbersome product is that it turns into ordinary product after
Fourier transform. This result is classic:

Proposition 4. ]ff LT Y e f(k)e=?mkz/n stands for the Fourier transform of map f € C%»,
then

— ~

frxg=1[xg
Combining with the definition of tiling by equation (E), we get
Theorem 10.
n forx=20

A®B =172, <— axg:nlfz\n:xH
0 else

Essentially, setting apart the case of 0, the product of the Fourier transform of the characteristic maps
of the inner and outer voices must be nil. This motivates the following definition:

Definition 3. Z(A) = {k € Z,,14(k) = 0} is the set of zeroes of the Fourier transform of [the
characteristic map of] A.

With this definition,
Proposition 5. A tiles with outer voice B if and only if Z(A)U Z(B) = Z, \ {0} and #A X #B = n.

The zeroes of the Fourier transforms of A and B must cover Z,, (minus 0). For instance, with n = 24
and

A={0,3,12,15} & B ={0,4,8,10,14, 18,26}
we have

Z(A) ={2,6,8,24} and Z(B)=1{3,4,6,12}
This last proposition is actually the fashionable definition for tilings among mathematicians [24]. We
will see in the algorithms section how efficient it may prove in the quest for Vuza canons, for instance.
A pretty corollary is the following:

Theorem 11. If A tiles with B, then so does any motif A" homometric with A.

The proof is straightforward when one recalls that ‘homometric’ (i.e. sharing the same interval content)
is equivalent to sharing the same absolute value of the DFT, and hence the same Z(A).!* It remains to
find significant examples of this result, with A’ not congruent to A modulo transposition or inversion
(i.e. Z-related in Forte’s definition), these transformations being special cases of Thm. 5.

UThe intervalic distribution of A € Z,, is shown in 14 x 1_ 4, whose Fourier transform is ﬂ X G = |ﬂ|2.
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Using Z(A) is not as cumbersome as it looks: the definition by covering of Z, \ {0} is less fuzzy
than it seems, since these sets of zeroes are not arbitrary subsets of Z,; they admit a large degree of
organization:

Theorem 12. For any set A C Zy, if v € Z(A) then Z(A) contains all elements of the group (Z,,+)
sharing the order of x, i.e. all multiples of x by any integer coprime with n.

Recall the order of z € Z,, is the smallest integer m such that mx =0 mod n, hence m = n/ ged(n, ).
For instance, with B in the example above, 15 has order 72/3 = 24 and Z(B) contains 3, 15, 21, 33, 39, 51, 54, 69
which are all of order 24. A shorter description of Z(B) is ¢ all elements of Zzs with order 3, 4, 6,
12, 24, or 36 7. This explains why m A tiles with B whenever A does: the theorem really states
that Z(mA) = Z(A). We will see below how this shorter description of Z(A) is instrumental in some
practical algorithms for rhythmic canons: the set of these orders is precisely the set R4 defined below.

2.2.2. Polynomials. This last theorem is not obvious, it is better understood with the equivalent for-
mulation of tiling in terms of polynomials. Recall the expression of

e . —2irkx/n __ 722'7rx/nk
la(x) = E e = g e
keA keA

which appears as a polynomial in &% = e~27#/" the generic n'” root of unity.

Definition 4. The characteristic polynomial of subset A C Z, is A(X) =, 4 X*.7?

Then 14(x) = A(e~272/m) . Conversely, knowing all n values of 1, completely determines the polynomial
A(X), since its degree is < n. Now the equation for tiling becomes

Theorem 13.
A®DB=7, +— AX)xBX)=1+X+X?*+...X"! mod (X" -1) (Tp)

This can be checked directly from the definition of A(X), or derived from the product of Fourier
transforms. This is the traditional tool for the studies of tilings, from the seminal work of Redei,
Hajos, deBruijn et alii in the fifties, to the late nineties. It is worthy of note that tiling reduces to
factoring a very special polynomial:

X" —1

X -1

but in the non factorial ring Z[X]/(X™ — 1). This explains both the immense variety of rhythmic
canons,'® and the difficulty of the problem!*.

1(X)=1+X+... X" =

The factors of 1(X) in Z[X] are well known, they are the cyclotomic polynomials (so called because
they partition the roots of unity on the unit circle):

Definition 5. The k™ cyclotomic polynomial is ®,(X) = [[(X — &) where & runs over the set of
primitive k™ roots of unity (i.e. ¥ =1 but &™ # 1 for 0 < m < k). They can all be computed from
the functional identity

[[2a(x)=x"~1

din

12This can, and will, be extended to the case of a multiset.

13K olountzakis proved that the number of different possible outer voices B is larger than ¢V, for arbitrarily large
values of n, and this even in the case of Vuza canons [25]. For instance, the extremely regular motif A = {0, 10, 20, 30,40}
admits already 195,375 different complements modulo 50 (up to translation), which begins to get inconvenient for practical
computation.

14The comparison with prime number factorization and Diophantine equations in [34] thus rather underplays the
difficulty. But fortunately the very imperfection of the ambient ring of polynomials opens up new alleys of exploration,
with the adequate mathematical tools.
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The simplest ones arise for k = p, prime: ®,(X) =1+ X+ X?+4 ... X?~!1. Both Thms 12 and 5 derive
from the irreducibility of these cyclotomic factors. Since equation 13 can be rewritten in Z[X] as

A(X) x B(X) = 1(X) + Q(X)(X" — 1) = 1(X)(1 + (X - DQ(X)) = (1 + (X - DQ(X)) [ ®a(X)

1<d|n

the irreducibility of the ®,’s entails that each ®; must divide either A(X) or B(X) (even though A(X)
is really only defined modulo X™ — 1 — see above the reduction from A € Z to A € Z,). Hence the
central role played by these cyclotomic factors, which culminated with the conditions for tiling found
by Coven and Meyerowitz in the last years of the century.

2.2.3. Conditions (Ty) and (T3). In [11] they introduced, for A C Z,,
Definition 6. Ry = {d, ®, | A(X)} and Sa = {p* € Ra,p prime}.

For instance with A = {0,3,6,12,23,27,36,42,47,48,51,71} one gets Ry = {2,8,9,18,72}, 5S4 =
{2,8,9}.1% The presence of all the ®,4,d | n, in A(X) x B(X) entails that

e 54U Spg is the set'® of all prime powers dividing n, and
e R4 U Rpg is the set of all divisors of n (1 excepted).

Coven and Meyerowitz then proceeded to prove the following statements, the last of which is quite

difficult.

Theorem 14. Defining conditions
pPrESA
(Ty): Vp*,q°, 17 --- € Sp, p*q°rY--- € Ry (products of powers of distinct primes belonging to
Sa are in Ra);

one has

(1) If A tiles, then (T1) is true.
(2) If both (TY), (Ts) are true, then A tiles.
(3) If #A has at most two different prime factors, and A tiles, then both (1), (Ts) are true.

As of today, it is not known whether condition (7%) is always necessary for tiling. With the example
above we can check (T}) : #A4 = 12 = 2 x 2 x 3 since Sy = {2',23,3?}, and (T3) : 2 x 9 € Ry and
8 x 9 € Ry.

It is important in practice to note that if A tiles, then it tiles already with period lem(S4) (reducing
A to a subset of Ziem(s,))-

The link with Fourier transforms is straightforward: recall the organization of Z(A) in subsets of
elements with equal orders, these orders are precisely the elements of R4. For instance when Ry =
{2,8,9,18,72} we have Z, = {36} U {9,45,63} U {8,16,32,40,56,64} U ..., the multiples'” of n/d
where d runs over Ry4.

Another essential feature of rhythmic canons is apparent on R,4: the periodicity of A can be checked
on either Z(A) or Ry, and this is an important part of the most recent algorithms used for the search
of Vuza canons.

15Actually their definition stands for A C Z; we simplify slightly their exposition, since for any other polynomial
congruent with A(X) mod (X™ — 1), the subset of the divisors of n in R4, which are the indexes of the relevant
cyclotomic factors, does not change. We choose this as our definition for R4. Anyhow, S, is always made of divisors of
n.

16They show that corresponding cyclotomic polynomials occur only once, so this is a partition of the set of all prime
powers dividing n. On the other hand, sometimes R4 N Rp # 0.

17Multiple by some invertible, i.e. a number coprime with n, cf. supra. Beware that in the example given, 16 is not
8 x 2 but 8 x 11...
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Theorem 15. A is periodic in Z,, if and only if the complement set of Z(A) is part of some subgroup
of Z,. In practice, one may check whether there exists a prime factor of n which divides all elements

not in Z(A).

This can be checked almost visually. For A’ = {0, 5,8, 13}, which tiles Zg, R4 = Sa = {2,(10),16}
and (keeping n = 16) Z(A’) = {1,3,5,7,8,9,11,13,15} contains the complement of subgroup 2Zs,
hence is 16/2 = 8—periodic. The non zeroes are clearly members of a subgroup on picture 8.

4

.l
T T T T T T T T T T T T T T T T T T1

2 4 1] B 10 12 14

—.

FIGURE 8. The complement of Z(A’) is part of 2Zq as seen on the graph of |1|.

This theorem can be proved quite easily owing to the fact that a subset with period smaller than n
can be described with fewer than n Fourier coefficients. In the example above, A’ = A” & {0, 8} where
A" ={0,5}, and we recognize the kinship between their respective Fourier transforms on picture 9. A

204

1.0 F

2 3 4 5 b 7 &

F1GURE 9. The Fourier transform of A”.

useful special case is the following

Lemma 1. If A is a metronome: A = {0,r,2r,...(k—1)r} whose doubled length divides n (i.e. 2k | n)
then any complement B of A is periodic.

This enabled to discard motifs like {0, 10, 20, 30, 40,50} in the search for Vuza canons in Zg.

2.2.4. Matolcsi’s algorithm. After meeting in Ircam with several actors on the rhythmic canons scene,
Mate Matolcsi proposed an algorithm for the exhaustive search of Vuza canons in Z,, which is detailed
in the algorithms section below. The general philosophy is to use a toponomy of motifs based on the set
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of cyclotomic indexes R4'8, which generalizes the classification up to translation, retrogradation and
even affine transform (all of which do not change R4). In practice, it had to be completed with several
tricks of the trade (see [5, 25]). This algorithm allows, more generally, to find all canons with given
S4, Sp, should one remove the conditions on non-periodicity. It enabled to complete the classification
of Vuza canons initiated by Fripertinger [16] for n = 72,108 to n = 120, 144, 168. As a by-product, I
was able to prove that condition (73) is indeed necessary for tiling, for all canons of period n < 180, in
finding all Vuza canons for n = 120, 168.1

The results of Fripertinger, Amiot, Kolountzakis and Matolcsi for the enumeration of Vuza canons up
to period 168 are summed up in the following table (fig. 10). Factors are enumerated up to circular
permutation.

n Ra Rs number of A’s [ number of B’s
72 {2,8,9, 18,72} (3,4, 6, 12,24, 36} 6 3
108 (3,4, 12,27, 108} {2,6,9, 18, 36, 54} 252 3
120 {2,3,6,8, 15, 24, 30, 120} {4, 5,10, 12, 20, 40, 60} 20 16
120 {2,5,8, 10, 15, 30, 40, 120 {3,4, 6, 12,20, 24, 60} 18 8
144 | 123516182472, 144 {3,4,6,12,24,36,48} 36 6

or {2,8,9,16,18,72,144}

{2,4,9, 16, 18, 36, 144} or
144 {2,4, 6.9, 16, 18, 36, 144} or {3,6,8,12,24,36,72} 8640 3
{2,4,9, 12, 16, 18, 36, 144}

144 {3,4,6,8,12,24,48, 72} or {2,9,16,18,144} or 156 48
13,4, 6,8, 12, 24,36, 48,72} {2,9,16,18,36,144} +6 +12
{2,3,6,8, 12,24, 48,72} or

144 2.3)6,8,12, 18, 24, 48, 72} {4,9, 16, 18, 36, 144} 324 6

168 13,4,6, 12,24, 28, 84} {2,7,8,14,21,42, 56, 168} 16 54

168 {4,7,12, 14, 28, 26, 84} {2,3,6,8,21,24,42, 168} 104 42

Ficure 10. Classification of Vuza canons according to their set R 4.

2.2.5. Tiling the line and differences. There is a strange and deep relationship between the question of
tilings and the set of differences A — A = {a —d/, (a,ad’) € A x A}. We have already met a relationship
between homometry and tiling (Thm. 11), where the interval vector is nothing but A — A considered
as a multiset. It is also possible to define a tiling by differences: in [17] for instance the following
definition is given:

Definition 7. A tiles Z, if there is a set of translates of A, A; = A+ t;,i = 1...p such that for
U=U_A;, one hasU — U = Z,.

This is more akin to the definition of a covering that we gave in the first section. For instance,
Fripertinger gives as an example n = 8, A = {0,4,5,7} with outer voice B = {0,4,6}, whose sum is
the multiset {0,0,1,2,3,3,4,4,5,5,6,7}. We get a mosaic canon when U is actually equal to Z,.
Perhaps this stemmed from the following simple characterization:

Proposition 6. A¢ B=7Z, <= #Ax#B=nand (A—A)N(B— B) ={0}.

Proof. The second condition means that the sum is direct, since
a+b=d +V < a—d =0 -b
and the first one ensures that this direct sum fills the whole of Z,,. O

18Because Ry = Ras and A® B = Z,, implies A’ ® B = Z,.
9The case n = 144 treated by [25] could not yield counterexamples, since 144 has only two prime factors and Coven
-Meyerowitz had proved that in such tilings (7%) must be satisfied. The same goes for any motif tiling Zsg.
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Another, deeper connection with difference sets is the spectral conjecture. In its general form, it is
stated as “tiling <= spectral”, where ‘spectral’ means that the tile (a measurable subset of R™ in the
most general context) admits a Hilbert basis of exponential functions, just like any map in L?([0,1) is
the sum of its Fourier expansion. In our context, we have a less esoteric definition involving difference
sets:

Definition 8. A subset A € Z is spectral if there exists a spectrum A C [0, 1], i.e. a subset with the
same cardinality as A, such that e*™ %=X is a root of A(X) for all distinct \;, Aj €A

The spectral conjecture has been proved in many cases (convex tiles for instance) but in general it
is false, as first shown in high dimension by Field medalist Terence Tao [39]. Following further work
[24], the conjecture only remains open in dimensions 1 et 2. In dimension 1 which is our context for
rhythmic canons, Izabella Laba has proved that (77) + (T3) implies ‘spectral’, just as [11] proved it
implied ‘tiling’. So the conjecture is known to be true when n has only two prime factors, by the
last result in Thm. 14, and also for motifs that tile a ‘good group’ (non Hajos) [3]. The reduction
techniques by transformations of canons also prove that this conjecture is true if and only if it is true
for Vuza canons (see [1, 5, 18]), which is another stringent motivation for their study.

2.3. Some algorithms.

2.3.1. Vuza canons. Numerous algorithms have been devised by various mathematicians for computing
what we call Vuza canons in the scope of this article. Some are fairly cumbersome. For an exposition
and comparison of the different methods, see [15]. For a reasonably efficient program aiming at a
complete classification for a given period, see paragraph 2.3.3 below. For those who are averse to
complicated programming, the best solution is probably to make use of already computed tables.?’
Using some of the transformational techniques described in this article enriches the field of solutions
considerably.

As a starting point for constructing large, uncatalogued Vuza canons, we give the following algorithm,
which is the simplest (providing just one solution); it was exposed by Franck Jedrzejewski [22]:

Proposition 7 (2003). Let py,ps be prime numbers and n;,i = 1..3 satisfying nipy coprime with ney
and ngpy coprime with ny; then, denoting [a,b] = {a,a + 1,...b} we construct for n = pypaninang a
Vuza canon R® S = 7, with:

A=nang X ([0,p2 = 1][@ pony x[0,pr = 1) B =myng x ([0,pr — L[® ping x[0,p2 — 1])
S:ng(pzm X[[O,m - lﬂ@plnl X[[O,ng — ].]]) R = ([[].,713 — ].]]@B) UA

2.3.2. Completion. An essential part of the building of rhythmic canons is the search for the outer
voice B, knowing the inner one A. This enables to enrich the catalog, starting from the Vuza canons
provided by partial algorithms for instance. There are several ways to tackle this difficult problem
(probably NP-complete, according to [25]). We begin with the more naive one.

Assume the motif A begins with 0. We build recursively a complement B, also beginning with 0.
B is initialized to {0}. We call complete(A,{0}) where the procedure complete(A, B) is as follows:
o If #A#B = n, then add B to the list of complements of A; exit.

e If not, consider the complement C' of A® B in Z, (by construction, this sum is direct).
For all x € C, test whether 2 + A C C. If so, then call complete(A4, BU {z}).

After this step, all solutions must be reduced to basic form so that doublons can be eliminated.

Many bells and whistles may be added. A sound trick (helping to reduce redundancy in the list of
solutions) was used by Fripertinger: imposing the condition that the greatest interval in B is the first
one, i.e. if its elements are sorted as 0 = by < by < by < --- < n, then Vi > 0,b;11 — b; < by(—bg). This

207 ike http://canonsrythmiques.free.fr/EnumerationVuzaCanons.rtf
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algorithm is still valuable for fairly regular, run-of-the-mill, motifs. When looking for Vuza canons for
instance, we can use the more involved routine proposed by Matolesi ([25]):

Again, B is initialized to {0}. We call oracle(A, {0}) where the procedure oracle(A, B) is defined
recursively as follows:

o If #A#DB = n, then add B to the list of complements of A; exit.

e If not, consider the complement C' of A @ B (again, the sum is direct).

r—keA
(A+k)cC
e Sort the values of r(z) and take x = xMin achieving the minimal value for r(z).

e If this minimal value r(xMin) is 0, then exit (this branch of the tree is a dead end); else call
oracle(A, BU {k}) for all the r(xMin) values of k corresponding to zMin.

For all z € C, compute r(x), the number of k£ such that simultaneously

End as before by sorting all basic forms in the list of complements found.?!.

The point of complicating the algorithm is that, especially for irregular motifs, there may be very few
ways to ‘fill in the hole’ at x, and this means fewer branches to explore in the tree (sometimes only
one...or even none). This algorithm is particularily suited to the research of Vuza canons, especially
in combination with the specific formula of Coven and Meyerowitz which proves the second point of
Thm. 14:

Proposition 8. If A satisfies (T1) and (1), then a complement of A in Z,, i.e. B satisfying A® B =
Ly, can be produced by its characteristic polynomial: B(X) is the product of the ®pa (X"/pv(p)), where

p* | n s not in Syu, and n =[], pq;(pi) is the decomposition of n into prime powers (so that n/p'® is

the largest divisor of n coprime with p).

Example 5. Consider Sy = {2,8} and n = 24.? Since 24 = 233, the missing prime powers in S, —
which must indeed be in Sp —, are 4 = 22 and 3, which are respectively complemented to 24 by coprime
prime powers 3 and 8; we compute

B(X) = ®4(X?) x ®3(X%) = (1 + (X°)*)(1 + (X®) + (X%)?),
hence B = {0,6,8,14, 16,22}, which does indeed tile with A = {0, 3,12,15} for instance.

A third algorithm is the one used by Davalan, making use of graphs and maximal cliques, see [13] in
this issue of PNM. It compares quite favorably with the other ones, especially for regular motifs, and
it was indeed used for double-checking some of the results on Vuza canons with period 180.

2.3.3. Algorithms involving some form of completion. This construction gave birth to two applications.

The first one is compositional: the software OpenMusic developed a patch (a kind of graphic user
interface module) for creating so-called cyclotomic canons [12]. The recipe is straightforward:

e Choose n and #A (a divisor of n). The program will now deliver several (not all) rhythmic
canons with this configuration without other input from the user.

e Compute all possible Sy, using (7).

e For each possible S4 compute R4 using (7).

e Compute [ [, . R, Pr = A(X). Keep it whenever the coefficients are only 0’s and 1’s, else discard.

e Compute B(X) from S, with the Coven-Meyerowitz formula above.

21With an Intel Core duo processor at 2.66 GHz, complements in Vuza canons with periods between 100 and 200 are
found in seconds; but the 195,375 complements of (0, 10, 20, 30,40) modulo 50 are found in a little more than one hour.
Such regular ‘metronomes’ are particularly time-consuming. See [27] for an embryonic theory of tilings with similar
motifs.

221f we start from an actual motif A and n is unknown, Coven and Meyerowitz proved that n can be taken equal to
the lem of R4 — or any multiple thereof.
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Example: n = 24,#A = 6. Then S, must contain exactly 3 and one power of 2, i.e. is one of the
following: {2,3}, {4, 3},{8,3}. The corresponding R4’s are {2,3,6},{4,3,12},{8,3,24}. The product
of cyclotomic polynomials yields respectively

X X - X X2 X+ L, X+ X T+ X+ X2+ X+ L XM+ X X2 X2 X 41

As it happens, all are 0-1 polynomials. Corresponding B’s are computed with the Coven-Meyerowitz
formula, respectively

X18—|—X12—|—X6+1,X15+X12+X3+1,X9+X6+X3+1
Finally we get the three different rhythmic canons shown on fig. 11.

F1GURE 11. Three solutions for n = 24, #A = 6.

The second application of the Coven-Meyerowitz completion formula is (part of) an algorithm for
cataloguing Vuza canons in a given Z, (a bad group), due to Mate Matolcsi [25, 5]). It enabled to
check Fripertinger’s results for n = 72,108 and to complete the catalog for n = 120, 144, and recently
168. The idea is to check for all possible sets S4.

e Compute all partitions in two subsets of the set of prime power divisors of n. Keep (usually)
the smallest part, which will be S4 (the other being of course Sg).

e Compute the Coven-Meyerowitz complement B for S4.%3

e Compute all possible A completing B, using one of the general completion algorithms described
above.?t Sort by the different values of R4, keeping one representative for each possibility.

e Discard all sets R4 that either
(1) ensure that A is periodic, or
(2) ensure that B must be periodic (recalling that Rp must contain at least all divisors of n

not in R,), making use of Thm. 15.

e For each remaining representative of possible A’s, compute complements B with oracle, dis-
carding the periodic ones.

e Whatever remains is a Vuza canon.

Details and tables of results are given in [8].

Another construction advanced by the same authors remedied the excessive computer-time required for
some cases. It makes full advantage of a remark above (to be found originally in [11]), that if A tiles Z,
then A also tiles Ziy(s,). Often this is actually the best way to compute all complements of A, because
the oracle procedure is not at its best on very regular motifs, such as those built up by the Coven-
Meyerowitz completion formula. I will describe it on an example: the most difficult case for n = 168,
computationally speaking, was S4 = {2,3,8}. Eventually I solved it by considering all possible values
of A in Zoyy, i.e. all tilings of Zyy = A & B where Si = {2,3,8}. There are exactly 6 (basic forms

23This is a periodic motif.
2¥or a periodic, regular motif such as this B, complete is sometimes no slower than oracle.
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of) solutions, found by completion of the Coven-Meyerowitz complement as explained above but with
n = lem(2,3,8) = 24. This complement is (6, 18) (in basic form, meaning e.g. {0,6} C Zy, or any of
its translates) and its six complements, i.e. possible values of A, are (up to translation)

{0,1,2,3,4,11,12,13,14, 15,16, 23}, {0,2,3,4,7, 11,12, 14, 15, 16, 19, 23},
{0,3,4,7,8,11,12, 15,16, 19, 20, 23}, {0, 1,2, 3,5, 10, 12, 13, 14, 15,17, 22},
{0,2,3,5,7,10,12,14,15,17,19,22},{0,1,2,4,5,9, 12, 13,14, 16, 17, 21}

Now it only remained for each of these values to test the (aperiodic) complements of all A’s uplifted
modulo 168, e.g.

A=1{0,1,2,3,4,11,12,13,14,15,16,23} + 24{a,b,c... £},0 < a,b... L < 6

(moreover, a = 0 may be assumed without loss of generality). Examination of these 72 million cases
or so (taking the aperiodic A’s and looking for aperiodic complements) yielded 104 x 42 solutions in
reasonable time.

Other theoretical results prove to be of practical importance. For instance, when trying to find Vuza
canons as outlined above for n = 168,54 = {4,8}, the computer stumbled on the many million
complements of {0,28,42,70}. But since this motif is a multiple of 14, any canon A & B = Zgs can
be demultiplexed, i.e. B = U(i + 14B;) where B; tiles Zigs/14 with A/14, i.e. B; @ {0,2,3,5} = Zs.
This yields B; = {0,4, 8}, (or any translate thereof) and hence B must be 4 x 14 = 56-periodic.

2.3.4. Computation of Z(A) and R4. We mention this small subroutine, because it can be quite time-
consuming if the programmation is sloppy (from personal experience). M. Matolcsi suggested the
following alternative to the polynomial division by some cyclotomic factor. The salient mathematical
fact is that we need only check A(X) for X = e*7/ where d carries over the list of divisors of n
(substantially shorter than the range 1...n, eg 16 cases only for n = 168). The algorithm runs as
follows:

e Compute the list of divisors of n.

e For any d in this list, compute A(e*™/4) =Y, _, ?*/4_1f necessary, increase precision (for n
in the range of several hundreds, I use 20 digits floating arithmetic).

e If the result is zero (within a given tolerance), then all elements of Z,, with order d are in Z(A),
or equivalently, d € R4. The list of these specific values of the DFT can be recorded, normalized
(0 or not) for comparison purposes, since it characterizes R4 or Z(A).

We will not provide algorithms for integer arithmetic routines, like listing divisors (or selecting which
are powers of prime numbers), which are sometimes pre-build in programming languages, and anyway
are easy to write from scratch, say in C.

It is possible to build an algorithm with exact polynomial arithmetic - checking whether A(X) is
divisible by a given (tabulated) cyclotomic polynomial, but it proved to be way too long for applications
like the computation of all Vuza canons of order 144. Davalan used a neat trick for the purpose of
classification, consisting in computing the ged of A(X) and X™ — 1, thus retaining the product of all
relevant cyclotomic factors.

2.3.5. Szabo’s construction. This was advanced in [38] for building counterexamples to a conjecture of
Sands (destroying in one fell swoop a number of other conjectures too). It provides rather large canons
— the smallest known period working for this algorithm is n = 900, see [4].

e Choose some prime numbers wu;, v;,2 = 1...3;

e The period n is n = Hle U 0;.
n
e With ¢g; = ;i =1...3, compute A = @le{O,gi,Zgi, .. (u; — 1)g;}, a direct sum of arith-

metic sequences with ratio g; and length u;. Hence #A = ujusus.
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e Similarly we build a first version of B = @?:1{0, WiGis 20iGi, - - - (v; — Duyg; b s0 #B = v10q03.
It is straightforward to check that A ® B = Z,, B being quite simple (a subgroup).? So we
introduce a perturbation, producing fake banknotes:

e We choose some permutation o € S5 (say ; g :1)) ).

e Add to all elements of B with form ku;g; + us(;)gs(;) the value g; (recall that general elements
of B have the form ku;g; + uags + musgs, so we adress a small number of them here).

e The perturbed outer voice B’ still tiles with A.

This yields Vuza canons, with the additional irregularity that they are not the result of the multiplexing
of any smaller canon (this is guaranteed with some technical conditions on the u;, v; which are sufficient
but fortunately not necessary).

The simplest case is when the u; (resp. v;) are 2, 3 and 5, yielding period 900 canons.

2.3.6. Kolountzakis’s construction. The preceding algorithm smacks of a geometrical construction: A
is build up like a direct sum of arithmetic sequences in three different ‘directions’. This is explicit in
the following algorithm, that Mikhalis Kolountzakis devised in order to prove that the period of the
smallest canon tiled by A may be quite large, compared with the width of the motif A itself.

The starting point is that for n = 30ab (where a,b are odd primes > 5), the cyclic group Z, is
isomorphic with the product Zs, X Zs, X Zy, which can in turn be seen as two identical sheets (the
last value, in Zs, indexes the sheets), which are rectangles® tiled by ab identical 3 x 5 tiles. This
elementary tile is A: in 3D coordinates, it is {0, 1,2} x {0,1,2,3,4} x {0}. So B is initially the lattice
B =10,3,6,...3(a—1)} x{0,5,...5(b—1)} x {0,1}. Just as in Szabo’s construction, B is perturbed
so as to render it non periodic. Graphically, Kolountzakis suggested to shift a row in one sheet and
a column in the other. Algorithmically, all combinations of such shifts can be tried (some will yield

periodic canons, and may be discarded). It only remains to apply explicitely the isomorphism from
Zga X Z5b X Zg to Zn

FI1GURE 12. Perturbed lattice in 3D and the isomorphic Vuza canon.

251 Jike to describe B as the banknotes, and A as the loose change.
26With the understanding that opposite sides coincide, so it is a torus really.
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To sum up, the algorithm is:

e Compute A, B as lists of triplets. It may be convenient to
(1) Keep a tensor structure (a matrix of triplets), and even
(2) keep B as two parts — the ‘lower triplets’ (3x,5y,0) By and the ‘upper’ ones (3z, 5y, 1) in

Bl-

e Shift one (or several) columns of By, say adding (1,0,0) (or some multiple) to all elements of
one column.

e Similarly shift a row (or several) in Bs.

e Apply the isomorphism (z,y, 2) — az + Sy + vz from Zs, X Zs, X Zs to Z,. Coefficients «, 3,y
can be computed from the inverse isomorphism, which gives a system of congruences:

ar+ Py+vyz=x mod 3a
ar+ By +vz=y mod bb
axr + By +vz =2z mod 2

so that for instance (taking (z,y,z) = (0,0,1)), 7 is the multiplicative inverse of 15ab modulo
2, times 15ab, so it is always 15ab since a, b are odd.

2.4. From canons to matrixes. A nice way to represent (mosaic) tilings is building matrixes for
both inner and outer voices. In a more general context [6], it is shown how the convolution product of
characteristic functions is isomorphic to the ordinary product of matrixes. The trick is to turn a set
first into its characteristic function, which can be represented as a (column) vector, then to put side
by side all circular permutations of this vector in order to get a circulating matriz.

100 00O0O00O0
01.000O0O0TO
001 0O0O0O0OO
For instance the tango rythm {0,3,4,6} C Zg turns into i (1) 8 (1) (1) 8 8 8
01 100100
10110010
01011001

If we denote by M(A), M(B) the matrixes associated with subsets A, B, the important formula is
M(A@® B) = M(A) x M(B) (M)

Hence we have a mosaic canon whenever M (A) x M(B) = 1,, the matrix with ones everywhere. This
does not allow an easier recipe for solving the tiling problem (i.e. finding all M(B)’s with 0 or 1
coefficients satisfying (M) for a given M (A)), but some matricial techniques enable to provide at least
one solution. Since these techniques are well implemented in many programming environments and
work for somewhat large matrixes, this can be of interest to composers. One such technique is linear
programming: since we want M(A) x b=1 € R" (it is enough to test the product on the first column
b of M(B)), we can try to minimize the linear form b — b; +...b, (a.k.a. #B when B is a true set) in
the domain defined by inequalities b > 0 (or even 0 < b < 1) and M(A) x b > 0. Linear programming
does that by following edges of the polytope thus defined, always choosing the edge that leads to the
lowest value of the linear form.

Perhaps surprisingly, this almost always works.?” Moreover, since the geometric (simplex) algorithm
involved in linear programming is ‘looking for corners’, jumping from vertex to vertex, it tends to give
packed solutions, which are usually non periodic: a good way to generate Vuza canons with large periods
(from a few hundreds to 1,000 or so) is to start, as above, with a Sy, its Coven-Meyerowitz complement

2TAn exception, running the native LinearProgramming routine in Mathematica 6.1, is (starting with S4 =
{3,25,125},n = 750), the tile {0, 87,171, 213,234, 375,462, 546, 588,609}. However, it is already quite convenient, though
mysterious, that almost all solutions are in 0’s and 1’s.
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(usually a very regular tile By) and then to iterate linear programming, finding Ay, By, A, Bs, ... until
it loops (or, quite exceptionally, fails). Then A; ® B; is usually a Vuza canon.

This kind of ping-pong game has been tried for all periods up to 1,000, in the (so far vain) hope of
providing a canon where (75) would not be satisfied.

3. TILINGS WITH AUGMENTATIONS

We have a constellation of small results for this type of canons, which is of course of paramount historical
importance since augmentation was a favorite compositional device for several not unconsiderable
musicians.

However, this remains by and large terra incognita: for instance, it is still unknown whether is it
possible to tile with a finite number of augmentations of any given (finite) tile, though we have the
obvious

Theorem 16. It is possible to tile the non negative integers N (and a fortiori Z, tiling it in two halves)
with augmentations of any finite given motif A C Z.

The trick is, if you have already covered a subset ALREADY of N; to add whatever augmentation of A,
offset to the first gap to the right, does not overlap ALREADY, and iterate. This greedy (and rather
stupid) algorithm provides a tiling of N, which is usually far from optimal. See below for a better
fitting. Fig. 13 shows the beginning of this algorithm for {0, 1,3}, where the successive augmentation
ratios eventually cycle on the sequence 1,2,4,4,1,2,4,4....

_-.-“'-'.-...'...- o

F1GURE 13. Tiling greedily with augmentations of {0, 1, 3}.

3.1. Johnson’s perfect tilings. One of Tom Johnson’s numerous ideas is trying to tile with aug-
mentations of the simple tile {0, 1,2} with different ratios 71, ...4. In terms of polynomials, it means
finding a decomposition

I X +X24+ . X" = X"+ X"+ X29) 4+ X214+ X2 4 X22) 4 X (1 X% 4 X))

with different i;’s. In the general case, using X = e*"/3 in the last equation, it can be shown that

the number of ratios divisible by 3 is a multiple of 3, and similar results, but little more is known
theoretically about building solutions.

When the sequence of ratios is just 1,2. .. k, this problem is equivalent with that of Langford sequences.
This has been explored computationally. The state of the art about perfect tilings can be found in this
issue of PNM with J.P. Davalan’s paper [13].

3.2. Johnson’s JIM problem and generalizations. In 2001 Tom Johnson proposed building rhyth-
mic canons by augmentation of motif {0, 1,4} with ratios of 2,4,8... (it is impossible to tile with
translations only) [21]. The smallest solution is on fig. 14.

Andranik Tangian devised a computer program, finding all solutions up to some given length [34]. It so
happened that the length of all solutions was a multiple of 15. Variants of this problem exhibit similar
behaviour. Surprisingly, the reason for this experimental result involves Galois theory in finite fields.
Since in any field with characteristic p we have the Frobenius automorphism® x — F(x) = 2P, we get

BMeaning F(z +y) = F(z) + F(y) and F(z x y) = F(z) x F(y).
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FIGURE 14. Smallest tiling with augmentations of {0, 1,4}.

Lemma 2. For any P € F[X] where F is a finite field with characteristic 2, P(X?") = P(X)*".

Now the polynomial equation expressing a tiling with augmentations (of ratio 2, 4...) of a motif A is
(cf. [34])

X" —1

X -1
where the B;’s are 0-1 polynomials indicating the different entries of augmented motif 2¢A.%

Mixing all this, we get that in general A(X) x (X — 1) must be a divisor of X™ — 1 (this is always
possible for some n as shown by Theorem 20 below, but here we are looking for necessary conditions
on n).

In the case of Johnson’s problem, since 1 + X + X* = A(X) is irreducible in F5[X], the quotient field
Fy[X]/(A(X)) is isomorphic with Fy: = 14, which shows that the roots of A(X) in this appropriate
extension are of order 15 = 16 — 1 (since they belong to the group Fjs with 15 elements). So A(a) =
0 < o' =1, 1ie if A(X)| X" — 1, then necessarily 15 | n.

This line of thought can be used for predicting the size of solutions with any (finite) tile: it must be a

multiple of the lem of the 2¥ — 1 where k runs over the degrees of the irreducible factors of A(X) in
Fy[X], see [3] for more details. However,

A(X) x Bo(X)+ AXH) x Bi(X)+ ... AX")B(X) =1+ X+ X*+... X" =

e getting these irreducible factors modulo 2 requires advanced programmation (or software);

e this computation does not work for general augmentations (like ‘perfect tilings’), only with
ratios in 2*, and

e the condition on size is necessary; it is not known whether this is sufficient for a solution to
exist.

3.3. Using orbits of affine maps: autosimilarity and tilings. Once one’s eye is set on rhythmic
canons, they seem to crop up everywhere. For instance, the study of Johnson’s autosimilar melodies
[21, 2] revealed a possible construction of some rhythmic canons by augmentation.

Definition 9. Let M = (mg,my...m, = my,...) be a n—periodic melody (the my’s are notes, or
rests, or other musical events beginning on beat k). We say that M is autosimilar under the affine map
x— ax+b modn when

VE Mgy = My,

meaning that augmenting the melody with ratio a and offsetting by b yields the same melody.

Famous examples include the Alberti bass (autosimilar under any odd ratio), Beethoven’s fifth sym-
phony’s famous four-note motif, or Glenn Miller’s In the Mood. Notice that a should be coprime with
n for the map to be invertible.

Tom Johnson’s intensive use of this notion made desirable a thorough mathematical study. The useful
point for us here is the following characterization:

29With the example above, By (X) = X% and By(X) =1+ X2 + X% + X0,
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Proposition 9. Melody M 1is autosimilar under ¢ : x +— ax +b mod n <= the set of occurrences
of any event m, i.e. {k / my =m} is an orbit (or a reunion of orbits) of the map .

The question of tiling vs. autosimilarity arose when Tom Johnson found {0, 1,3,7,9}, which tiles Zy
by translation and is also autosimilar with ratio 3. We have only one very partial result in the way of
autosimilar melodies that tile by translation, with very short tiles (two notes):

Theorem 17. A melody autosimilar with ratio a # 1 and period n > 4 gives a tiling of Z, by
translations of a 2-tile iff n = 4k,a = 1 + 2k, b = +k with k odd.

Two-note motifs may look a little barren, but it may be possible to build up longer tiling motifs with
unions of these tiles. On the other end, there is more to be said on tilings by augmentation. A simple
but productive case is the following:

Proposition 10. For n prime, the orbits of the map x — ax provide a tiling of Z,.

For instance for n = 7,a = 2 we find orbits {1, 2,4} and {3,6, 12} = {3,6, 5} which tile {1,2,3,4,5,6}.
0="7 is left standing alone, since it is a one-note orbit, cf. fig. 15. Tom Johnson pointed out that such
isolated notes can be played as rests, providing interesting relief in the melody.

In more general situations, orbits are not generally the same size, which complicates the matter.
However, there is another recipe, where tiles are no longer orbits but quite the reverse:

Lemma 3. Any affine map whose orbits share the same length enables to build tilings with augmen-
tation.

Proof. Consider any set X transverse with the orbits, i.e. containing one point and only one from each
orbit. Then X, f(X),... f ~1(X) partition Z,, i.e. X tiles with its augmentations a X + b a.s.o. O

Example 6. All the orbits of f : x +— 13x + 3 mod 20 have length 4:
{0,2,3,9},{1,6,11,16},{4,15,17,18},{5,7,8,14} and {10,12,13,19}. Take for instance the first ele-
ments: X ={0,1,4,5,10}. Applying f yields all following members of each orbit: f(X) = {3,16,15,8,13}.
Iteration of the process gives a mosaic, where all motifs are images of the preceding one by the map f.
Notice that one can choose any starting element in each orbit, thus finding 128 different tilings.

In general, when orbits have unequal lengths, this may yield a covering not a mosaic.

Il
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FIGURE 15. A tiling (packing) of Z; with {1,2,4} and augmentations.
Unfortunately, there is no known simple characterization of such affine maps. A partial discussion of
this situation is given in the Online Supplementary of [2], wherein it is proved that

Lemma 4. All orbits have the same length whenever the smallest orbit has length (some multiple of)
o(a), the order of a in the multiplicative group 7.

On the bright side, these constructions can be used in dimension 2 or more, providing tesselations of
the torus Z2 and thereby tiling simultaneously pitch and time-span, for instance. On fig. 16 one can
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FIGURE 16. A 2D-tiling with “augmentations”.

see the orbits of matrix A = 411 3 mod 9, tesselating the torus Z,, X Z15. Each orbit is the image
of another (the origin (0, 0) excepted) by some matrix commuting with A .
In order to turn this method into a practical recipe for tiling, it would be necessary to predict which

maps display orbits of equal length.

3.4. Find’em all algorithm. For many applications, there is nothing better to do than an exhaustive
search by tree parsing, for instance when trying to find all mosaics with a given set of motifs. The
general algorithm is as follows, it is generally easier to implement it recursively:

e Consider a set of motifs M, ... M}, (all beginning with 0), and a set to tile (could be a multiset,
or a cyclic group).

e Define recursively a procedure Fillln whose variables are: what part of the whole set is already
covered (ALREADY) , and how (SOFAR) it was filled, e.g., the list (or array) of the different
translates of the different motifs used so far to fill ALREADY.

e If ALREADY is the whole set to tile, then add SOFAR to the set of solutions; else

e Compute FG, the first gap remaining to be filled (the smallest element of the complement set
of ALREADY).

e For all motifs My, ... M, do

— Compute FG + M;.

— Check if it fits, i.e. whether ( FG + M;)N ALREADY =0 (check also whether FG + M; is
below the upper limit, when there is one). If not, exit; if it does, then

— Add FG 4+ M; to SOFAR, compute accordingly the new value of ALREADY and call Fillln
recursively with those new values.

This algorithm is in exponential time, but guarantees all possible solutions. Depending on the precise
tiling problem involved, some shortcuts may be found.

Several researchers have independently implemented their own version of this, which is basically a
parsing of a tree whose nodes are the remaining gaps. The algorithm (in Fortran) is exposed in lavish
detail in [35] for the case of {0,1,4} and its augmentations; Jon Wild [43] had written and optimized
a similar one for general purpose (in C), which is the quickest version so far; in high-level languages
like Mathematica, it takes about fifteen lines of code and runs quickly enough for comparatively small
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tilings. On the other hand, when the motif has many symmetries, the number of complements may be
quite large, and computing time/memory becomes critical.

For an alternative view, scanning a graph not a tree, see [13] in this issue of PNM.

4. MISCELLANEOUS RHYTHMIC CANONS

4.1. Tiling with inversion/retrogradation. Very little is known about tiling with retrogradation.
As we have seen above, it is possible to engineer non periodic tilings when retrogradation is allowed,
though if a motif (together with this its retrograde) tiles aperiodically, then it must also tile periodically
(see Thm. 3). It is clear that some motifs cannot tile by retrogradation: {0, 1,3, 4} for instance, because
it would tile by translation, being auto-reverse.

The only general result is Wild’s trichord theorem (he noticed later that this had been discovered
previously by Meyerowitz, see [42]).

Theorem 18. Any motif with three notes tiles (an interval) by retrogradation. More precisely, the
following greedy algorithm always provides such a tiling (though not necessarily the most compact):

e Call L and R the two forms of the motif, with L < R (say the motif is {0,4,7}, then it is R,
and L is {0,3,7}). We put L (in 0) as the first tile. Then iterate the following until a tiling of
some range [0,n — 1] is reached:

e Go to the first gap g to the right in the partial mosaic built so far. If possible, put a L tile
beginning there, e.g. g+ L. If not, put in g+ R.

Wild proved that this procedure is always possible, and that is must end in finite time (though some
solutions are rather large). His interest came from medieval theories of scales, and a textbook case is
the tiling with major and minor triads, see fig. 17.

P
ey #

FIGURE 17. Tiling with minor and major triads, aka {0,3,7} and {0,4, 7}.

It is a palindromic solution, as all solutions of this algorithm seem to be, though the only proof of this
was flawed.

There is no guarantee for more than 3 notes: this algorithm sometimes work, sometimes not. My tango
Noli mi tanguero uses a 6 voices (reduced to 3) solution for the traditional rhythm {0, 3,6, 8}, see fig.
18. Astor Piazzola has tried several tilings (usually coverings) using these rhythms in some of his more
experimental tangos.

4.2. Canons modulo p. One of the most surprising results about tilings is the following. I was looking
for ‘local’ conditions (in the sense of p—adic projection) and realized that there were none to be had:

Theorem 19. Any finite motif A tiles modulo p, i.e. the equation (Tp) : A(X) x B(X) =14+ X +
... X" mod (X" —1,p) admits solutions B for any given subset A if the computation is made modulo

p, for any prime p.

This means that it is possible to factor the canonical (sic!) equation in F,[X]. For instance, though it
is impossible to tile Z by translations of {0, 1,4}, modulo 2 one gets

I+ X+ XY x(1+X+X°+ X+ X+ X+ X)) =14+ X+ X*+... X" mod 2
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Ficure 18. Tiling with a tango rhythm.

Actually this means that we get a covering (not a mosaic).: the number of notes on each beat is not
equal, but congruent to 1 (mod p), see beats 6, 9 and 10 where the number of notes is 3. So a musical
score might look like figure 19.

FIGURE 19. A tiling (covering) with an odd number of notes on each beat.

The proof involves non trivial Galois theory, see [3](Thm. 30). It hinges on

Theorem 20. For any polynomial P € F|x] where F is a finite field, such that P(0) # 0, P is a divisor
of X™ —1, for somen € N.

According to [41], this was implicit in Galois’s original papers.

Essentially, every root o of A(X) € F,[X] lives in some finite extension F, of IF,, with ¢ = p™. Hence
(by Lagrange’s theorem) a? ! = 1 in F,, meaning that X — « is a factor of X% ! — 1. With some
twiddling (because of multiple roots) we get some large n (a multiple of all those ¢ — 1 for all roots)
such that A(X) divides X™ — 1 — but this happens now in F,[X] because all coefficients lie in that
prime field. Applying this reasoning/algorithm to A(X) x (X — 1) instead, one gets an exact quotient

X" -1

B(X) = m, 1.€. (

transformation rule (while o > 2)

Tp) is true. It only remains to turn B(X) into a 0-1 polynomial® by the

an N (O{— I)Xk+Xn+k+1

This is a constructive algorithm, though it is helpful to use some high-level software for computations
in finite fields — especially factorization of the polynomial in irreducible factors in F,[X]). A simpler,
but more cumbersome algorithm, would just test whether n is suitable, for larger and larger values of
n of the form n = p/ lem;<,,<x(p™ — 1) (the factor p/ allows for multiple roots):

j =0; m=0;
UNTIL A(X) divides X"n - 1 mod p
DO j++; m++; n = p~j * lcm(p-1,p"2-1, ... p°m-1)

30T here is nothing more to be done when p = 2, of course, and hence any motif tiles a range [0,n — 1] modulo 2.
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(polynomial division modulo p is quite easy to implement even when not native to the programming
environment).

In any event, it is better, when such an n is found, to check whether some of its divisors satisfies (7})
mod p for the given A(X), in which (frequent) case a smaller solution exists.

5. ACKNOWLEDGEMENTS

First and foremost I cannot thank enough Dan Tudor Vuza for his wonderful gift of the notion of
rhythmic canons, and the avenues of thought that he opened with [40].

I am also very grateful to Andreatta Moreno, who introduced me several years ago to this fascinating
universe and inoculated me with his passion for the subject.

It is of course a privilege to work with John Rahn, and his invitation to collaborate on this special
issue was a source of lasting delight (along with some hard work).

Robert Peck and Thomas Noll earned my gratitude for many reasons, among which opening me the
columns of the Journal for Mathematics and Music and thus allowing me to develop some abstruse
research that might not have been published elsewhere.

My son Raphaél introduced me to the subtlest aspects of debugging in C. Without him I could not
have enumerated all Vuza canons for n = 168.

Last but not least, my loving and long enduring wife not only suffered my vacant gazes during research
periods, but helped improve the quality of my english even though the topics discussed are quite foreign
to her.

REFERENCES

[1] Amiot, E., Why Rhythmic Canons are Interesting, in: E. Lluis-Puebla, G. Mazzola et T. Noll (eds.), Perspectives
of Mathematical and Computer-Aided Music Theory, EpOs, 190-209, Universitat Osnabriick, 2004.

[2] Amiot, E., Autosimilar Melodies, Journal of Mathematics and Music, July, vol. 2, n® 3, 2008, 157-180.

[3] Amiot, E., Rhythmic canons and Galois theory, Grazer Math. Ber., 347, 2005, 1-25.

[4] Amiot, E., A propos des canons rythmiques, Gazette des Mathématiciens, SMF Ed., 106, 2005, 43—67.

[5] Amiot, E., New perspectives on rhythmic canons and the spectral conjecture , in Special Issue “Tiling Problems in
Music”, Journal of Mathematics and Music, July, vol. 3, n°® 2, 2009.
Amiot, E., Sethares, W., An Algebra for Periodic Rhythms and Scales, Springer, 2040.

e

[7] Andreatta, M., On group-theoretical methods applied to music: some compositional and implementational aspects,
in: E. Lluis-Puebla, G. Mazzola et T. Noll (eds.), Perspectives of Mathematical and Computer-Aided Music Theory,
EpOs, 122-162, Universitat Osnabriick, 2004.
[8] Andreatta, M. , Agon, C., (guest eds), Special Issue “ Tiling Problems in Music ”, Journal of Mathematics and
Music, July, vol. 3, n° 2, 2009.
[9] Andreatta, M., De la conjecture de Minkowski aux canons rythmiques mosaiques, L’Ouvert, n° 114, p. 51-61, march
2007.
0] Chemillier, M., Les Mathématiques naturelles, chap. 5, Odile Jacob Ed., Pris, 2004.
1] Coven, E., and Meyerowitz, A. Tiling the integers with one finite set, in: J. Alg. (212), 1999, 161-174.
2] Agon, C., Amiot, E., Andreatta, M., Tiling the line with polynomials, Proceedings ICMC 2005.
3] Davalan, J.P., Perfect rhythmic tilings, PNM, 2011.
4] DeBruijn, N.G., On Number Systems, Nieuw. Arch. Wisk. (3) 4, 1956, 15-17.
5] Fidanza, G., Canoni ritmici, tesa di Laurea, U. Pisa, 2008.
6] Fripertinger, H. Remarks on Rhythmical Canons, Grazer Math. Ber., 347, 2005, 55-68.
7] Fripertinger, H. Tiling problems in music theory, in: E. Lluis-Puebla, G. Mazzola et T. Noll (eds.), Perspectives of
Mathematical and Computer-Aided Music Theory, EpQOs, Universitat Osnabriick, 2004, 149-164.
[18] Gilbert, E., Polynémes cyclotomiques, canons mosaiques et rythmes k-asymétriques, mémoire de Master ATIAM,
Ircam, may 2007.

[19] Hajés, G., Sur les factorisations des groupes abéliens, in: Casopsis Pest. Mat. Fys. (74), 1954, 157-162.

[20] Hall, R., Klinsberg, P., Asymmetric Rhythms and Tiling Canons, American Mathematical Monthly, Volume 113,
Number 10, December 2006 , 887-896.

[21] Johnson, T., Tiling The Line, proceedings of J.I.M., Royan, 2001.

[22] Jedrzejewski, F., A simple way to compute Vuza canons, MaMuX seminar, January 2004,

http://www.ircam.fr/equipes/repmus/mamux/.



EMMANUEL AMIOT ST NAZAIRE, FRANCE

Kolountzakis, M. Translational Tilings of the Integers with Long Periods, Elec. J. of Combinatorics 10(1), R22,
2003.

Kolountzakis, M. & Matolcsi, M., Complex Hadamard Matrices and the spectral set conjecture,
http://arxiv.org/abs/math.CA /0411512.

Kolountzakis, M. & Matolcsi, M., Algorithms for translational tiling , in Special Issue “Tiling Problems in Music”,
Journal of Mathematics and Music, July, vol. 3, n° 2, 2009.

Laba, 1., The spectral set conjecture and multiplicative properties of roots of polynomials, J. London Math. Soc. 65,
2002, 661-671.

Laba, I., and Konyagin, S., Spectra of certain types of polynomials and tiling of integers with translates of finite sets,
J. Num. Th. 103, 2003, no. 2, 267-280.

Lagarias, J., and Wang, Y. Tiling the line with translates of one tile, in: Inv. Math. (124), 1996, 341-365.
Newman, D.J., Tesselation of Integers, J. Numb. THeory 9, 1977., 107-11

Rahn, J., Basic Atonal Theory, New York, Longman,1980.

Steinberger, J.P., Tilings of the integers can have superpolynomial periods, Combinatorica, 29, 2009, 503-509.
Steinberger, J.P., Multiple tilings of Z with long periods, and tiles with many-generated level semigroups, New York
Journal of Mathematics, 11, 2005, 445-456.

Swenson, C., Direct sum subset decompositions of Z, Pacific J. Math. 53, 1974, 629-633.

Tangian, A., The Sieve of Eratosthene for Diophantine Equations in Integer Polynomials and Johnson’s problem,
disc. paper N° 309, Fern Universitat Hagen.

Tangian, A., Constructing Rhythmic Canons, PNM, Vol. 41, no. 2 Summer 2003, 66-95.

Tijdeman, R., Decomposition of the Integers as a direct sum of two subsets, in: Séminaire de théorie des nombres
de Paris, 3D, Cambridge U.P, 1995, 261-276.

Sands, A.D., The Factorization of abelian groups, Quart. J. Math. Oxford, 10(2), 45-54.

Szabd, S., A type of factorization of finite abelian groups, Discrete Math. 54, 1985, 121-124.

Tao, T., Fuglede’s conjecture is false in 5 and higher dimensions, http://arxiv.org/abs/math.CO/0306134.

Vuza, D.T., Supplementary Sets and Regular Complementary Unending Canons, in four parts in: Canons. Persp.
of New Music, nos 29(2) pp.22-49; 30(1), pp. 184-207; 30(2), pp. 102-125; 31(1), pp. 270-305, 1991-1992.

| Warusfel, Structures Algébriques finies, Classiques Hachette, 1971.

| Wild, J., Tessellating the chromatic, Perspectives of New Music, 2002.

Wild, J., His new paper, Perspectives of New Music, 2011.



