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ABSTRACT

This paper aims at discussing the polynomial approach to
the problem of tiling the (musical) time axis with trans-
lates of one tile. We show how this mathematical con-
struction naturally leads to a new family of rhythmic tiling
canons having the property of being generated by cyclo-
tomic polynomials. We discuss the polynomial approach
as an extension of the classical way of formalizing tiling
canons by means of factorizations of cyclic groups and
we show how both approaches are historically related to
some mathematical conjectures (Keller, Minkowski, Fu-
glede). The implementation of the polynomial approach
in the visual programming languageOpenMusicoffers to
composers and music theorists a way of exploring huge
catalogues of possible canons constructions. At the same
time, the implementation shows that the representation of
the tiling process with a canonical product of cyclotomic
polynomials does not necessarily provide the musical so-
lution that would naturally fit with the musical intuition.

1. INTRODUCTION

Tiling problems in music theory, analysis and composi-
tion have a relatively old history in mathematical music
theory. From a pitch-perspective, the study of some tiling
problems in music is historically related to Hugo Riemann
original representation of the tone space by means of a
translation of deformed squares generated by oblique ma-
jor and minor thirds axis (see Figure 1).

Figure 1. Hugo RiemannsTonnetz(see [5]).

Many attempts have been made in order to provide some
alternative models of the tiling process of the tone space,
particularly by the so-called Neo-Riemannian American
and European tradition.1 The mathematical exploration
of the tiling properties of the tone space naturally leads
to computational models for computer-aided music anal-
ysis and composition, from C. Longuet-Higgins geomet-
ric representation of tonality in just-tuning intonation to
the very recentOpenMusicimplementation of harmonic
transformations with the hexagonal tiling lattice model
proposed by composer Jean-Marc Chouvel (See Figure 2).

Figure 2. Longuet-Higgins (left) and Chouvel (right)
tiling models of the tone space by translates of a square
([7]) and of a hexagon ([8]).

Surprisingly, despite the well-known canonical equiva-
lence (isomorphism) between a well-tempered division of
the octave and the cyclic character of any periodic rhythm
[9], the study of some tiling properties of the time-line
by means of translates of a given rhythmic tile (or some
usual transformations of it) is a relatively new research
area inside mathematical music theory. We have already
sketched the history of the emergence of tiling rhythmic
structures in music composition starting from Olivier Mes-
siaen original attempt at defining musical canons indepen-
dently of any considerations about pitch values [2]. Dan
Tudor Vuza’s algebraic model of tiling canon construction
by the factorization of a cyclic group into a direct sum of
two subsets [10] gave a strong impulse to the implementa-
tion of algebraic methods in music composition.2 In this

1 See [6] for a survey and a historical perspective on Neo-Riemannian
theory from the standpoint of the American tradition.

2 For a detailed presentation of the group factorization approach to the
construction of tiling canons, together with theOpenMusicimplementa-



paper we focus on a different approach to the tiling canon
construction. This approach is based on the mathematical
concept of cyclotomic polynomials and it enables to for-
malize a tiling rhythmic canon in terms of a factorization
of the time-axis as product of cyclotomic polynomials of
given order. Some preliminary definitions about cyclo-
tomic polynomials, tiling of the line process and rhythmic
tiling canon construction will be provided in Section 2.
In Section 3 we show how this approach has been im-
plemented inOpenMusicvisual programming language
and discuss some difficulties in directly applying the cy-
clotomic factorization to the canon construction. In Sec-
tion 4 we discuss some interesting connections between
Vuza’s original model ofRegular Complementary Canons
of Maximal Category[10] and the polynomial approach
by also showing how both strategies are intimately related
to some mathematical conjectures.

2. SOME PRELIMINARY DEFINITIONS

This section provides some definitions on cyclotomic poly-
nomials and some general factorization theorems.

2.1. 0-1 polynomials and rhythmic canons

A rhythmic canon is a decomposition of a cyclic groupZn

into a direct sum of two subsets:

Zn = A⊕B

An enhancement of the ambient structure originates to
[11]. By puttingA(x) =

∑
a∈A xa, the above equation

becomes a relation between 0-1 polynomials, that is to say
polynomials with coefficients being either 0 or 1:

A(x)×B(x) ≡ 1+x+x2 + · · ·+xn−1 (mod xn−1)

Factors of the polynomial∆n(x) = 1+x+x2+· · ·+xn−1

are thus of paramount importance, especially those with 0-
1 coefficients. We find a number of them by considering
the notion of cyclotomic polynomials.

2.2. Cyclotomic polynomials

Definition 1 Thenth cyclotomic polynomial is

Φn(x) =
∏

gcd(k,n)=1

(x− e2i k π/n)

This is the monic polynomial whose roots are the primi-
tive units of ordern, that is to say theξ ∈ C for which
zn = 1 thoughzr 6= 1 for 1 ≤ r < n.

A classical result states that these polynomials have in-
teger coefficients, i.e.Φn(x) ∈ Z[x].

Another classical result states that they are irreducible
in the euclidean ringQ[x], and hence inZ[x]. In other
words, any polynomial inZ[x] having a primitive unit root
of ordern hasΦn as a factor.

tion, see [18]. For a combinatorial discussion of Vuza’s model, also see
[20]

Directly relevant to rhythmic canons is the fact that the
product of a selection of cyclotomic polynomials can be
expressed by the following equations:

xn − 1 =
∏

d|n Φd(x)
∆n(x) := 1 + x + · · ·+ xn−1 =

∏
d|n,d 6=1 Φd(x) (1)

Formula (1) enables to compute efficiently all cyclo-
tomic polynomials.

UsuallyΦn have small coefficients, often0, 1 or−1. In
particular the repetitive rhythm of a metronome is easily
expressed as a product of cyclotomic polynomials:

1+xk +x2k + . . . x(m−1)k =
xmk − 1
xk − 1

=
∏

d|mk,d 6|k

Φd(x)

Note that some of these cyclotomic factors are NOT 0-1
polynomials, though their product is. For instance:

Φ6 × Φ3 = (1− x + x2)(1 + x + x2) = 1 + x2 + x4

2.3. CYCLOTOMIC POLYNOMIALS AND THE
RHYTHMIC TILING CANON CONSTRUCTION

The importance of these particular polynomials lies in the
following lemma:

Lemma 1 If A ⊕ B = Zn, then for alld | n (d 6= 1) Φd

is a divisor of eitherA(x) or B(x).

Thus, cyclotomic polynomials occur in all rhythmic canons.
Conversely, in theOpenMusicimplementation we have
tried to use these polynomials to build up some rhythmic
canons. As we will see, some other rhythmic canons are
left out of this schema, but nevertheless it gives an inter-
esting degree of control over the canons construction.

Except in special cases [2], it is not known whether a
given rhythmic motif enables to make a canon unless one
is able to exhibit such a canon; but looking for the outer
rhythm knowing only the inner rhythm is impractical as
far as computing time is concerned.

Since 1998, there is a useful sufficient condition (also
necessary when the number of notes in the motif has at
most two prime factors) dealing with the cyclotomic fac-
tors. LetA be an inner rhythm andA(X) the associated
0-1 polynomial. PutRA = {d, Φd dividesA(x)} and
SA = {pα ∈ RA} the subset of prime powers. It is proved
in [15] that if both following conditions are true, thenA
enables to build a rhythmic canon:

(T1) : A(1) =
∏

pα∈SA
p

(T2) : pα, qβ · · · ∈ SA ⇒ (pα, qβ . . . ) ∈ RA

Condition(T1) is also always necessary. We will look
again at these conditions in connection with the spectral
conjecture (or Fuglede conjecture) and its relationship with
Vuza canons in the final section. The next section deals
with construction of rhythmic canons inOpenMusicusing
these conditions.



3. THE OPENMUSIC IMPLEMENTATION

3.1. Simple cases of tiling canon constructions via cy-
clotomic factors.

In the simpler cases, e.g. for small periods, we do not
need to test if a given product of cyclotomic polynomial
verifies (or not) the two conditions by Coven-Meyerowitz.
We simply use equation (1) to express the inner rhythm as
a product of cyclotomic factors, and the outer rhythm as
the product of the remaining ones. Figure 3 shows the list
of solutions for all periods4 ≤ n ≤ 10. (We did not
include the cases of periods equal to a prime numberp.
In this case, the tiling canon trivially reduces to a single
subset(1 1 . . . 1) of the time-axis having cardinality equal
to p).

Figure 3. Catalogue of tiling rhythmic canon that are di-
rectly given by simple cyclotomic factors (or any given
product of them).

We briefly analyze the case of periodn = 8 which is
the only one to possess three cyclotomic polynomialsΦ2,
Φ4 andΦ8 that can be combined in all possible3! ways.

3.1.1. The case n=8

This case shows the strong symmetric character of the
tiling construction principle for a periodn having three di-
visors. Each cyclotomic polynomial associated to a given
divisor (e.g.Φ4) tiles the line, i.e. it can be taken as a in-
ner rhythm for a tiling rhythmic canon. The outer rhythm
is automatically given by the product of remaining cyclo-
tomic polynomial (in this caseΦ2×Φ8). In order to build

the corresponding tiling canon we simply need the lisp-
function poly2canonthat canonically associates a given
cyclotomic polynomial to a subset of the cyclic groupZn.
The following figure (Figure 4) shows the tiling process
starting from cyclotomic factors. On the left we use the
circular representation to represent the tiling canon as a
direct sum of the two subsets associated respectively with
cyclotomic polynomialsΦ4 andΦ2 × Φ8. Notice that a
direct sum of two subsets can also be expressed in terms
of transpositional combination [6]. This is why we use the
lisp function transp-comb. On the right we use the stan-
dard canons function of the OM-Libray Zn to explicitly
build the 4 voices canon (cf. [2]).

Figure 4. A tiling rhythmic canon obtained by cyclotomic
factors.

Thanks to the symmetric role of the cyclotomic factors
we can easily apply the same cyclotomic decomposition to
construct the dual rhythmic canon, i.e. the 2 voices canon,
each voice being associated to the subset ofZ8 having
4 elements. The dual case is represented in Figure 5. Al-
though one can always construct a new canon by dualizing
an existing factorization of a given cyclic group into two
subsets, this process no longer applies to the cyclotomic
factors, as we show in the next section.

3.2. The list of cyclotomic products having the T1 and
T2 properties

For periodsn > 10 we need to test the two conditions of
Coven and Meyerowitz in order to be sure that the asso-
ciated rhythmic canon tiles the time axis. The algorithm
thus tests all sublists of the list of divisors ofn for condi-
tionsT1, T2 and computes the corresponding products of
cyclotomic polynomials.



Figure 5. The dual tiling rhythmic canon obtained by in-
verting the role of cyclotomic factors forn = 8.

We will now discuss in detail the casesn = 12 and
n = 16. The first case shows some difficulties in obtain-
ing symmetrically inner and outer rhythms as products of
cyclotomic factors. The second case enables to understand
some general properties of the “modulation” process be-
tween rhythmic tiling canons having periodn and2n.

3.2.1. The case n=12

Since 12 has five divisors(2, 3, 4, 6, 12), the cyclotomic
factors may combine in several ways in order to tile the
line. Apart fromΦ6 = 1−x+x2 andΦ12 = 1−x2 +x4

(which are not 0-1 polynomials), each cyclotomic polyno-
mial of indexk ∈ {2, 3, 4} tiles the line by itself.

We lose somehow the symmetric distribution of the
simpler cases. For instanceA(x) = Φ2Φ4Φ6 should tile,
as conditionsT1, T2 are fulfilled: SA = {2, 4} and there
is only (T1) to check, namelyA(1) = 2× 2.

But the simple trick of multiplying the remaining cy-
clotomic factors of1+x+x2 + . . . x11 does not work this
time, as

Φ3Φ12 = 1 + x− x3 + x5 + x6

is not a 0-1 polynomial.
The outer rhythm may still be produced with cyclo-

tomic polynomials, following the proof of the Coven and
Meyerowitz theorem, but the formula is more complicated:

B(x) = Φ3(x4) = 1 + x4 + x8 = Φ3Φ6Φ12

(see figure 6)
As usual, we can build the dual canon by simply invert-

ing the role of the factors (see Figure 7).

Figure 6. A 3 voices tiling rhythmic canon associated
with the two polynomialsA(x) andB(x).

Figure 7. A 4 voices tiling rhythmic canon constructed by
taking the polynomialB(x) as inner rhythm andA(x) as
outer rhythm.

3.2.2. The case n=16

This case is interesting in relation to the casen = 8 that
we have studied in section 3.1.1. Intuitively, when we
multiply a given periodn by some integer factork, all in-
ner rhythms that tileZn will necessarily tileZm with m =
nk (although with respect to a different outer rhythm). All
possible solutions for periodn = 16 are given in Figure
8.

As we can see, there is the same symmetry principle in



Figure 8. Catalogue of tiling rhythmic canons of period
n = 16 that are directly given by simple cyclotomic fac-
tors (or any given product of them).

the distribution of solutions for the inner and outer rhythm.
Take for example the solution given by the cyclotomic
polynomial Φ4. In the previous case, withn = 8, the
outer rhythm was provided by the productΦ2 × Φ8. By
multiplying the period by 2, these two factors will still
be present in the new outer rhythm that will be enlarged
by the remaining cyclotomic factor, i.e.Φ16. The figure
9 shows the new canon having inner and outer rhythms
given byΦ4 andΦ2 × Φ8 × Φ16 respectively.

Figure 9. A 8 voices tiling rhythmic canon associated
with the two polynomialΦ4 andΦ2 × Φ8 × Φ16

Notice that we can interpret the relation between the
previous case (n = 8) and the new case (n = 16) as
a rhythmic ”modulation” process enabling to transform
a 4 voices canon into a 8 voices canon being generated
by the same rhythmic pattern. This technique has been

largely applied by composer Georges Bloch in the case of
a special family of rhythmic tiling whose inner and outer
rhythm do not have transpositional symmetry (i.e. they
are not interpretable, from a pitch perspective, as exam-
ples of Messiaen limited transposition modes).3 It is a
good example of purely mathematical property (namely,
if p dividesd thenΦd(xp) = Φpd(x)) which takes a new
meaning when used by a musician. We now go back to
this special case in order to show have both approaches
(group factorization and cyclotomic decomposition) are
intimately linked to some mathematical conjectures.

4. RHYTHMIC TILING CANONS AND SOME
MATHEMATICAL CONJECTURES

As we said, Vuza’s original model of rhythmic canons fo-
cused on a very special family of tiling canons. These
were group-theoretically formalized as the solution of fac-
torizing a given cyclic group into the direct sum of two
non-periodic subsets. This theory has been established
by Vuza independently of any consideration of geomet-
ric tiling conjectures. Nevertheless, as we have already
shown [18], it is possible to directly link Vuza’s model
to Minkowski’s original conjecture of the tiling of then-
dimensional space by unit cubes. We briefly summarize
this connection in order to show how Minkowski’s con-
jecture could provide a bridge between Vuza’s model and
the new tiling constructions by cyclotomic polynomials.

4.1. Minkowski’s Conjecture and Vuza’s model

In the introduction, we have mentioned some examples
of tiling of the pitch-tone space by polygons (rhombus,
squares, hexagons). If we focus on squares, we easily
see that in any planar tiling by squares, at least a cou-
ple of squares have an entire edge in common. According
to Stein and Szabo [21], we call this property the ”twin
property” (See Figure 10).

Figure 10. Two examples of planar tiling having the twin
property.

3 The modulation process betweenregular complementary canons of
maximal categoryhas been applied in the composition for small en-
sembleProjet Beyeler(2001) which were commissioned by the Beyeler
Foundation in Basel. For an analytical account of Georges Bloch’s com-
positional approach, see [17].



Hermann Minkowski conjectured that the ”twin prop-
erty” would be true in any dimension. More rigorously:

Minkowski’s Conjecture (1907). Any lattice tiling of n-
dimensional space by unit cubes has the twin property, i.e.
there must be a pair of cubes (the twins) that share a com-
plete (n-1)-dimensional face [22].

By translating (and finally solving) the geometric con-
jecture into a group-theoretical problem, mathematician
G. Hajos opened the path to the classification of so-called
Hajos groups, i.e. groups such that for any factorization
into finite subsets, at least one of the subset is periodic.4

One can easily see that Vuza’s original condition of max-
imal category does not apply to Hajos groups. Moreover,
one could try to develop a theory of Hajos (and non-Hajos)
groups by starting from a weaker version of Minkowski’s
conjecture, for example by removing the lattice condition.
This generalization has been suggested by Keller by stat-
ing that any tiling of then-dimensional space by parallel
unit cubes must have the ”twin property” [16]. The con-
jecture is still open for dimensions6 < n < 10, as well as
the musical relevance of the generalized model.

4.2. Vuza canons and the spectral conjecture

The operation of concatenation relating period 8 to period
16 canon examplifies the specificity of Vuza canons: a
Vuza canon is precisely a canon that is not obtainable by
concatenation of copies of a smaller canon. Enumeration
techniques inspired by Polya and Burnside combinatorial
algebra enabled mathematician H. Fripertinger to list all
Vuza canons for periods 72 and 108; it is thus now known
that Vuza canons are scarcer than one out of a million.
Nevertheless, they are a key to the famous spectral con-
jecture [12] still unsolved in dimension 1. This conjec-
ture, not unlike the conjectures by Minkowski, Hajos and
Keller, links geometry to harmonic analysis. It was no-
ticed shortly after the Coven-Meyerowitz discovery that
conditions(T1), (T2) are strongly linked to the spectral
condition for a tiling: if a motif is spectral then(T1) is
true, if furthermore(T2) is true then the motif is spectral
[13].

But a canon that is NOT Vuza may be decomposed into
a smaller canon, by the inverse operation of concatenation.
For instance, motif(0, 1, 4, 5) tiling with period 8 is two
copies of motif(0, 1) which tilesZ4.

It was proved [3] that this operation preserves condi-
tion (T2). Hence if a rhythmic canon tiles without being
spectral, it shall be reduced to a Vuza canon with the same
property. In other words:

If the spectral conjecture is false then it is false for
some Vuza canon.

If all Vuza canons are spectral then so are all canons
of any kind.

The scarcity of Vuza canons is a further indication that
the spectral conjecture might be true in dimension 1. Fur-

4 Musically speaking, at least one of the factors has Messiaen’s trans-
position limited property.

thermore, all the algorithms currently used for producing
Vuza canons are guaranteed to produce canons verifying
(T2) (from other kinds of reduction techniques). But there
is as yet no certainty as to the general Vuza canon, for
there is no known way to produce or descript the cyclo-
tomic structure of all of them.

5. CONCLUSIONS

The Open Musicimplementation of the cyclotomic ap-
proach is a necessary step in our general search of all pos-
sible solutions of tiling rhythmic canons of a given period.
We have shown some connections between the classical
approach based on the factorization of a cyclic group into
two subsets and this new approach that makes use of the
mathematical theory of tiling the line by translated of a cy-
clotomic polynomial (or of a product of cyclotomic poly-
nomials). Coven-Meyerowitz conditions have been the
starting point for implementing compositional algorhitms
enabling to tile the musical line via cyclotomic polyno-
mials. Although the two conditions are also necessary
in some special cases, the problem remains of establish-
ing necessary and sufficient conditions for the tiling of the
line problem. We have shown some difficulties in trying to
recover Vuza’s original theory by the cyclotomic decom-
position (and vice-versa). As in the case of the classical
approach of rhythmic tiling canons construction by fac-
torization of cyclic groups, the polynomial approach natu-
rally leads to some still open mathematical conjectures, as
the spectral conjecture. We suggest that the special family
of Regular Complementary Canons of Maximal Category,
originally conceived by Vuza in terms of factorizations of
cyclic groups into non-periodic subsets, could play a ma-
jor role in the musical interpretation (and mathematical
solution) of the spectral conjecture.
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toröıdale : application a l’analyse harmonique
de la musique d’Hermeto Pascoal”,Śeminaire
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