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To see a World in a Grain of Sand
And a Heaven in a Wild Flower

Hold Infinity in the Palm of your Hand
And Eternity in an hour

William Blake, “Auguries of Innocence”

SELF-SIMILAR STRUCTURE is one that exhibits parallel construction
at different levels of scale. Notions of self-similarity have often been

invoked in organicist explanations of the evolution and unity of musical
compositions. At around the same time Blake wrote the quatrain that
serves as an epigraph for our paper, Heinrich Christoph Koch was offer-
ing his conception of musical form as the expansion and elaboration of
what he considered the basic musical element, the phrase. The most
profound attempt in this direction is the mature theory of Heinrich
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Schenker: aspects of self-similarity are evident in his concepts of Schichten
and verborgene Wiederholung. A few years back, Charles Wuorinen and
Benoit Mandelbrot presented a joint lecture-concert at the Guggenheim
Museum on fractals and music, perhaps the most notable of many such
experiments. It is the appeal of fractals and chaos theory that has revived
interest in self-similarity in scientific circles, where the notion had long
been in disrepute.

We will show how the diatonic scale exhibits a kind of self-similarity,
and prove that this self-similarity property characterizes a class of scales
sharing some essential features of the diatonic. This proof in turn sug-
gests the notion of a self-similar dual. We also present a compositional
idea for realizing analogues of self-similar pitch structures in the rhythmic
domain. The ultimate, unrealizable model is an infinite sequence, that
potentially exhibits two kinds of self-similarity, in what we may call hori-
zontal and vertical dimensions.

By interval of periodicity we mean an interval whose two boundary
pitches are functionally equivalent. Normally, the octave is the interval of
periodicity. By scale we refer to a set of pitches ordered according to
ascending frequencies (pitch height) bounded by the interval of periodic-
ity. A step interval is an interval whose two boundary pitches are adjacent
pitches of a scale.

The self-similarity found in the diatonic and in several other well-
known scale systems proves to be associated with the property called well-
formedness. Well-formed scales were defined in Carey and Clampitt
1989.1 A generated scale is well-formed if its generator always spans the
same number of step intervals. As Example 1 shows, the pentatonic scale
is generated by the perfect fifth, and is well-formed because all four of its
generating perfect fifths span three steps.

The pentatonic scale, generated by the perfect fifth, is well-formed since all
perfect fifths span the same number of steps (3).

EXAMPLE 1
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Any equal-interval scale, such as the ordinary twelve-note chromatic,
trivially satisfies the definition of well-formedness, and is referred to as
degenerate well-formed. In the usual mod 12 universe, the most interest-
ing well-formed sets are those generated by ic 5, especially the pentatonic
and diatonic, but there are in all twenty-one nondegenerate well-formed
sets within the usual twelve-note universe. These are listed in Example 2.

EXAMPLE 2: THE 21 NONDEGENERATE WELL-FORMED

SETS IN THE TWELVE-NOTE UNIVERSE

Given an interval in the context of some particular scale, the number of
step intervals that the interval spans is its generic measure. In other

no. Forte number Prime form ic generator

1. 2–1 [01] 1

2. 2–2 [02] 2

3. 2–3 [03] 3

4. 2–4 [04] 4

5. 2–5 [05] 5

6. 3–1 [012] 1

7. 3–6 [024] 2

8. 3–9 [027] 5

9. 3–10 [036] 3

10. 4–1 [0123] 1

11. 4–21 [0246] 2

12. 5–1 [01234] 1

13. 5–33 [02468] 2

14. 5–35 [02479] 5

15. 6–1 [012345] 1

16. 7–1 [0123456] 1

17. 7–35 [013568a] 5

18. 8–1 [01234567] 1

19. 9–1 [012345678] 1

20. 10–1 [0123456789] 1

21. 11–1 [0123456789a] 1
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words, generic measure is the number of step intervals enclosed by the
interval. In all nondegenerate well-formed scales, each nonzero generic
interval class contains exactly two specific varieties. Clough and Myerson
1985 introduced the term Myhill’s Property, or MP, to designate this
property. Example 3 presents a tabulation of the constituent steps of dia-
tonic intervals. The two specific intervals which span the same number of
steps appear in the same row. Such a decomposition of the diatonic inter-
vals is found in Hucbald, albeit in garbled form, and in later treatises such
as the Contrapunctus of Prosdocimo de’ Beldomandi.2

EXAMPLE 3: DECOMPOSITION OF DIATONIC INTERVALS

INTO STEP INTERVALS

The diatonic scale is self-similar in the following respect: the distribu-
tion of semitones within any diatonic interval is approximately equal to
the overall distribution of semitones within the octave, namely two in
seven (see Example 4).

EXAMPLE 4: DISTRIBUTION OF HALF STEPS IN DIATONIC INTERVALS

COMPARED WITH HALF STEPS PER OCTAVE

span smaller no. of m2s no. of M2s larger no. of m2s no. of M2s

1 m2 1 0 M2 0 1

2 m3 1 1 M3 0 2

3 P4 1 2 A4 0 3

4 d5 2 2 P5 1 3

5 m6 2 3 M6 1 4

6 m7 2 4 M7 1 5

Span Larger Smaller

1 2nds

2 3rds

3 4ths

4 5ths

5 6ths

6 7ths

0 1⁄ < 2 7⁄ < 1 1⁄
0 2⁄ < 2 7⁄ < 1 2⁄
0 3⁄ < 2 7⁄ < 1 3⁄
1 4⁄ < 2 7⁄ < 2 4⁄
1 5⁄ < 2 7⁄ < 2 5⁄
1 6⁄ < 2 7⁄ < 2 6⁄
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Consider two diatonic segments, for example C D E F G A and E F G
A B C, spanning major and minor sixths, respectively. One of the five
steps in the major sixth is a semitone, while the ratio is two in five in the
case of the minor sixth. Now , therefore  and 
are, in fact, the closest approximations to  with denominator 5.
Example 4 shows that the same holds true for seconds, thirds, fourths,
fifths, and sevenths as well.

Diatonic scale segments thus possess a synechdochic property: the part
reflects the organization of the whole with a minimal, but inevitable
degree of distortion. The subtle, sober variety that distinguishes Grego-
rian chant is, rhythmic considerations aside, a manifestation of this prop-
erty of the diatonic system. The self-similarity property entails that
diversity is conjoined with homogeneity, amplifying the discussion of the
dialectic of pattern matching and position finding in Browne 1981. The
property is also suggestive of the maximal evenness property defined in
Clough and Douthett 1991. However, not all maximally even sets have
Myhill’s Property, and sets with Myhill’s Property are not always maxi-
mally even.

Myhill’s Property proves to be crucial for the existence of the kind of
self-similarity demonstrated above. It is our intention to show that all
nondegenerate well-formed scales are self-similar. We will show that a
scale has Myhill’s Property (MP) if and only if it is nondegenerate well-
formed (WF*), and that it has self-similarity (SS ) if and only if it has
Myhill’s Property, or .

THEOREM. 

We require some preliminary definitions and formalisms. Example 5
relates the symbols we will be using to the definitions, and gives examples
from the diatonic scale for reference in translating into musical terms.
Greek letters represent real numbers, while Latin letters are reserved for
integer values.

The integral part  of a real number  is the greatest integer less
than or equal to . The fractional part  of a real number  is the
difference between the number itself and its integral part. That is,

.
Any type of scale in which the usual notion of octave equivalence is

operative has a representation as a set of values between 1 and 2,
 where the fi are the frequencies of pitches

within a representative octave, or logarithmically as 
, where .

1 5⁄ 2 7⁄ 2 5⁄< < 1 5⁄ 2 5⁄
2 7⁄

SS MP WF*↔ ↔

SS MP WF*↔ ↔

θ[ ] θ
θ θ{ } θ

θ{ } θ θ[ ]–=

1 f0 f1 … fN 1– 2< < < <=
0 s0 s1 …< <=

sN 1– 1< < si log2 fi( )=
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EXAMPLE 5: SYMBOLS USED IN PROOF

Let S represent such a set of logarithmic values:

.

We will call the ordered pairs of S the intervals of S. The span of an inter-
val from si to sj is defined to be the least non-negative value mod N,
that is, just the number of step intervals from si to sj, “wrapping around”
if necessary. The size of an interval  is the fractional part, .
The size of an interval is thus some real number ρ, .

The two mathematical values, span and size, correspond to the musical
notions of generic and specific intervals, respectively. In this setting, S is
said to have Myhill’s Property if for every nonzero span d intervals of S
come in exactly two sizes. This is a slight but important generalization of
Clough and Myerson’s definition, in that we allow interval sizes to be
irrational values.

The following definitions apply to sets with MP:
Let αd and βd designate the two interval sizes for intervals of span d.

The number of distinct intervals of span d and size αd will be called the
multiplicity of αd and likewise for βd. The symbol m will designate the
multiplicity of βd. For example, in the diatonic set, if d is 2, α2 represents
the interval size “major third” and β2 represents the interval size “minor
third.” Here m, the multiplicity of β2, is 4 since there are four minor
thirds. In the C-major set these are: D–F, E–G, A–C, B–D. Clearly, the
total number of intervals of span d is N, so the multiplicity of αd is

. Intervals of span 1 will be called steps. Let g be the multiplicity of
β1. (Note that g is a special case of m. Strictly speaking, since m varies
with d, we might write md; then , but the multiplicity of β1 will
play a special role, so we give it its own symbol.)

Symbol Definition Diatonic Example

N cardinality of set with MP 7

d span 2 = span of a third

αd two sizes of Maj 3rd

βd intervals of span d min 3rd

m multiplicity of βd 4 (no. of min 3rds)

g multiplicity of β1 2 (no. of min 2nds)

x β1 content of αd: no. of β1s in αd 0 (no. of min 2nds in Maj 3rd)

S Si 0 s0 s1 … sN 1– 1< < < <={ }=

j i–( )

si sj( , ) sj si–{ }
0 ρ 1<≤

N m–

g m1=
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The property SS is defined exclusively on MP scales. Let x and  be
the number of β1 intervals in αd and βd respectively. An MP scale is said
to have SS if  and

for all d, .

PART ONE. S is WF* if and only if S has MP.

Carey and Clampitt 1989 proved one half of this proposition, namely
that all nondegenerate well-formed scales have MP. Here we prove the
other half: if S has MP, then it is WF*.

Method. By hypothesis, there are two interval sizes for intervals of span d.
Since αd and βd exist for all , m is strictly between 0 and N. It will
be sufficient to exhibit an interval of unique multiplicity: if for some span
d there exists exactly one interval of size βd, then there are  intervals
of size αd. Therefore, αd may be construed as a generator of constant
span d of the set S, so S is WF*.

Proof. Recalling that g is the multiplicity of β1, then

. (1.1)

The sum of the sizes of all intervals of span d equals d. This is true
whether the set has MP or not. Each step is contained in d distinct inter-
vals of span d, therefore:

. (1.2)

Our next observation is that intervals of a given span and size may be
uniquely decomposed into step intervals.

Suppose the contrary. Then ,
with . Then , but since , we must have

, contrary to supposition. We are justified, then, in distinguishing
αd and βd according to their step contents. Henceforth, αd will designate
the interval size which contains fewer β1 steps, βd the one containing
more β1 steps. Note that all arguments have been symmetric thus far with
respect to αd and βd. It is possible to distinguish between the step inter-
vals on the basis of size or multiplicity; it happens that in our concrete
diatonic example we have arbitrarily assigned β1 to the minor second, the

x ′

x ′ x 1+=

x
d
-- g

N
---- x ′

d
----< <

1 d N≤ ≤

d 0≠

N 1–

N g–( )α1 gβ1+ 1=

N m–( )αd mβd+ d=

αd d x–( )α1 xβ1+ d x ′–( )α1 x ′β1+= =
x x ′≠ 0 β1 α1–( ) x x ′–( )= β1 α1≠

x x ′=
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step interval that is both smaller and rarer, but one should make no gen-
eralizations based upon this. It follows, given our decision to designate
by αd the specific interval of span d with fewer β1 steps, that if ,
then . It does not follow that, if α1 has greater multiplicity than
β1, the multiplicity of αd is greater than the multiplicity of βd.

Next we show that there is a constant difference between the two
interval sizes of a given span:3

. (1.3)

Since there must be two intervals having the same span and different
sizes, we must be able to choose an interval r such that 

 has the size αd and  has
size βd. Now interval r' is simply r plus one step, and minus one step:

. By construction, r'
contains more β1 steps than r, so the only possibility is that 

, or . Therefore, if x is the β1 content of
αd, then

and (1.4)

.

Substituting 1.4 into 1.2,

.

So  and from 1.1, .

Thus,

.

We would like to simplify this equation by factoring out the value
. This value must be nonzero, since otherwise all N of the step

intervals would be of size α1, contradicting the assumption that the set
has MP. So,

α1 β1>
αd βd>

βd αd– β1 α1–=

r =
si s i d+( ) mod N( , ) r ′ s i 1+( )mod N s i d 1+ +( )mod N( , )=

r ′ r s i d+( )mod N s i d 1+ +( )mod N( , ) si s i 1+( )mod N( , )–+=
βd =

αd β1 α1–+ βd αd– β1 α1–=

αd d x–( )α1 xβ1+=

βd d x– 1–( )α1 x 1+( )β1+=

d N m–( ) d x–( )α1 xβ1+( ) m d x– 1–( )α1 x 1+( )β1+( )+=

N xβ1 d x–( )α1+( ) m β1 α1–( )+=

β1 α1–( ) Nx m+( ) Ndα1+=

d 1 Nα1–( )
Nx m+

-------------------------- β1 α1–=
1 Nα1–

g------------------ β1 α1–=

d 1 Nα1–( )
Nx m+

--------------------------
1 Nα1–

g
------------------=

1 Nα1–( )
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, or:

. (1.5)

We assert that g is a unit modulo N, that is, . Suppose

. Then . Let .

Then, since , , so . But  is

an integer, as is x, contradicting . Then g is a unit mod N.

From this information, together with 1.5 we have therefore:

, (1.6)

and setting mod N, . That is, when , βd has

multiplicity 1, αd multiplicity . It follows that S is well-formed.

Thus .

In the diatonic, , , and the multiplicative inverse mod 7
of 2 is 4, which is indeed the span of the unique diminished fifth, and of
the generating perfect fifths.

PART TWO. S has SS if and only if S has MP.

Method. Since SS scales have MP by definition, we need only prove that
MP implies SS.

Proof. Returning to line 1.5 above, we have: , where x is
the β1 content of αd.

Dividing both sides of equation 1.5 by dN, we have:

(2.1)

Clearly,  is a positive number less than , because is less than 1,

so we have the inequality:

. (2.2)

d
Nx m+
------------------ 1

g
--=

dg Nx m+=

g N( , ) 1=

g N( , ) p 1>= 1 N
p---- N< < d N

p----=

dg Nx m+=
N
p----g Nx m+=

g
p-- x

m
N
----+=

g
p--

0 m N< <

dg mmod N≡

d g 1–= m 1= d 1
g--mod N=

N 1–

MP WF*↔

g 2= N 7=

dg Nx m+=

g
N
----

x
d
--

m
Nd
-------+=

m
Nd
------- 1

d
-- m

N
----

x
d
-- g

N
---- x 1+

d
-----------< <
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Recall that x is the β1 content of αd, and so  is the β1 content of
βd. This fact, together with 2.2, shows that the distribution of a given
step interval within an interval of any span approximates as well as pos-
sible the distribution in the whole set. Then MP implies SS. Thus we have

.
This result, together with that of Part One, proves the theorem:

.

* * *

There is no mathematical reason to prefer the fifth to the fourth as the
generator of the diatonic scale. We might rightly suspect that there will
always be two generators in a WF* scale, whose sizes sum to an octave,
and whose spans sum to N. The following proves the existence of this
second generator and computes its span:

Since  (i.e., , the multiplicity of α1) is also a unit mod
N, when mod N (the multiplicative inverse of ), βd has
multiplicity , αd is unique. Thus,  is also a generator of
constant span.

We have, then, the following corollary:

COROLLARY. In an MP (therefore WF*) set of N elements, the spans of
the generating intervals are the multiplicative inverses mod N of the mul-
tiplicities of the step intervals.

In the usual diatonic the multiplicities of the steps are 2 and 5. As we
saw above, the multiplicative inverse of 2 mod 7 is 4, and 4 is the span of
the generating interval of the perfect fifth. Similarly,  mod 7 is 3, and
3 is the span of the perfect fourth.

Note that by the end of the proof (and in this corollary) all of the
Greek letters, and therefore all of the real numbers and their concomitant
references to specific tunings, have dropped out. This makes it possible to
classify nondegenerate well-formed scales based upon their characteristic
abstract patterns. We use the angle-bracket notation from Morris 1987 to
represent cyclic permutations of step interval patterns. For example, in
any tuning of the diatonic scale, the essential pattern of step intervals is
<aabaaab>. Moreover, any WF* scale with step multiplicities 2 and 5 will
exhibit this pattern, hence we can define an equivalence class of WF*
scales that share this pattern up to rotation. In fact, we can partition all
WF* scales into equivalence classes according to either their essential pat-
terns or their step multiplicities, since the patterns depend entirely upon
the step multiplicities.

x 1+

SS MP↔

SS MP WF*↔ ↔

gmod N– N g–
d g 1––= N g–

N 1– β
g–     mod N

1–

5 1–
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It will be useful to let such a class be represented by a  array, dis-
playing two pairs of interrelated integer parameters,

The multiplicities of the step intervals appear in the top row, the spans of
the generating intervals in the bottom row. Each row contains a pair of
numbers which are additive inverses modulo N, just as numbers in the
same column are multiplicative inverses. The diatonic belongs to the class
whose values are

which class contains all scales whose pattern of steps is some cycle of
<aaabaab>. The mutual relationship between steps and generators is
illustrated as follows: the sum of two fifths, modulo the octave, reduces
to one step, while four steps span a fifth. Similarly, five fourths reduces to
one step, while three steps span a fourth.

To obtain a seven-note scale with this pattern in which there are five
larger step intervals and two smaller ones only requires that the generat-
ing interval (the fifth) must have a logarithmic size strictly between 4/7
and 3/5 of the octave. (Expressed in cents, the fifth must be strictly
between 685  and 720.)

When columns are exchanged, transforming

into

2 2×

g g–

g 1– g 1––
mod N

.

2 5

4 3
,

5 7⁄

g g–

g 1– g 1––
mod N

gg–

g 1–– g 1–
mod N

,
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the class represented is unchanged. On the other hand, exchanging rows
establishes, in general, a different class:

Given a class of WF* scales, we define its dual to be that class in which
parameters which are multiplicative inverses mod N exchange roles. That
is, the dual of the class with parameters

is the class with parameters

The  array for the class which is dual to the diatonic is

The pattern of steps in the dual is <abababb>. The step multiplicities are
4 and 3; one of the generators is a “third,” spanning two steps, while the
other is a “sixth,” spanning five steps.

We construct a concrete WF* scale having these parameters. Taking
zero and the first six multiples of 350 cents, reduced modulo the octave,
gives the set S (0, 200, 350, 550, 700, 900, 1050). The generators,
whose sizes are 350 and 850 cents, span the requisite number of steps,
namely 2 and 5. The pattern <abababb> represents the ordering of the
steps, replacing each “a” with an interval of 200 cents and each “b” with
one of 150 cents.4

g

g 1– g 1––

g–
mod N

.

g g–

g 1– g 1––
mod N

g

g 1– g 1––

g–
mod N

.

2 2×

4 3

2 5
.

=
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It is interesting to observe that if any rotation of the dual pattern is
superimposed upon the notes of a diatonic scale, the as and bs of the dual
will partition the diatonic scale into a triad and its complement, a seventh
chord. This suggests that the dual may play some useful role in the har-
monic organization of tonal music.5

It is possible, of course, that  or . In these cases, the
pattern is its own dual. Such is the situation in the Pythagorean chro-
matic scale and its class,

or the class which contains the “black-key” pentatonic scales,

* * *

We have defined a notion of self-similarity on finite sets. In mathematical
settings, the concept of self-similarity is usually applied to infinite or
potentially infinite sets. As before, we represent a scale as a set of values
lying between 0 and 1. Given a generating interval of size θ, , a
generated scale of cardinality N is represented by the set of fractional
parts of non-negative integer multiples of θ: .
For certain cardinalities N, the resulting sets are well-formed. If θ is a
rational number  in lowest terms, it is easy to see that there are at
most B distinct points generated. If θ is irrational, however, an infinite set
of points may be generated, letting N range over all integers. This set is
dense and uniformly distributed, according to Kronecker’s Theorem
(Hardy and Wright 1979). This means that nowhere is it possible to
consider a “next note” using the usual order relation, and so the notion
of a scale is meaningless here.

On the other hand, suppose that θ is irrational and consider the
sequence of integers , that is, the integral parts of nθ, as n ranges
over all integers. Adjacent elements of this sequence always differ by j or

, for some integer j. Example 6 shows the sequence of integers
 as n ranges over all integers. Adjacent elements of this

g g 1–= g g 1––=

7 5

7 5
,

3 2

2 3
.

0 θ 1< <

0 θ{ } 2θ{ } … N 1–( )θ{ }, , ,

A B⁄

nθ[ ]

j 1+
n log23 2⁄[ ]
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sequence differ by 0 or 1. We derive a binary sequence in the following
way: if two adjacent integers differ by 0, they are replaced by an a, and if
they differ by 1, they are replaced by a b.

EXAMPLE 6: BINARY SEQUENCE ASSOCIATED WITH 

The as and bs of the binary sequence are merely tokens which could
admit various interpretations. A musical interpretation of the binary
sequence determined by  is displayed in Example 7.

EXAMPLE 7: THE BINARY SEQUENCE FOR  DERIVED VIA TUNING 

PROCEDURE

Begin on F3, represented here by a whole note, and generate new pitches
related by perfect fifths, keeping strictly within the octave between F3 and
F4. (The assumption of Pythagorean tuning means that it is always pos-
sible to remain strictly within this octave.) The sequence of upward fifths
and downward fourths corresponds to the sequence of as and bs, respec-
tively, in the binary sequence. The beginning of this sequence can be
thought of as a tuning procedure for the diatonic scale; indeed, this is the
procedure for tuning harps in some of the oldest musical evidence we
possess, the Assyrian-Babylonian cuneiform tablets described by Kilmer,
Crocker, and Brown (1976).

n: –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12

: –3 –3 –2 –2 –1 0 0 1 1 2 2 3 4 4 5 5 6 7

binary 
sequence:

a b a b b a b a b a b b a b a b b

n log2
3
2
--

log2
3
2
--

log23 2⁄

B=======================öb öb öb öb öb w ö ö ö ö ö ö ö# ö# ö# ö# ö# ö#
. . .     a      b       a      b       b    a      b       a      b        a      b      b        a      b        a      b       b    . . .  

a
b 

up a fifth
down a fourth

log2
3
2
--
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The notion of a scale with an infinite number of pitch classes confined
within a finite octave is highly problematic. Possible realizations of a
binary sequence in the rhythmic domain are conceivable, however, where
the as and bs are variously distinguished as short and long, or accented
and unaccented, et cetera. Rhythmic interpretations of pitch structures
have served as an analytical tool in Wooldridge 1992, and in the examina-
tions of asymmetrical ostinatos in Rahn 1987 and Pressing 1993, and in
Canright’s study of Fibonacci rhythmic patterns (Canright 1992).

In Clough and Myerson 1985, scales with MP were constructed by
taking integral parts of a rational number. The infinite binary sequences
generated here by an irrational number still have MP: strings of as and bs
of any given length come in precisely two varieties. Moreover, the
sequence of as and bs is quasi-periodic, i.e., it never repeats itself, but
every finite string of as and bs repeats itself infinitely many times. Thus,
the sequence is self-similar, indeed fractal in nature. Taking any segment
of length n and calling the number of as in it #a,  is a best approxi-
mation with denominator n to  or .

In the case of the golden number, the binary sequence is a one-
dimensional analogue of a Penrose tiling, discussed in Grünbaum and
Shephard 1986. A Penrose tiling is a two-dimensional nonperiodic tiling
of the plane using two different shapes, known as kites and darts. A por-
tion of a Penrose tiling is shown in Example 8. A Penrose tiling gives rise
to five sets of parallel lines, called Ammann bars. One set of Ammann
bars is shown in Example 8. The sequence of fat and thin Ammann bars is
precisely the infinite binary sequence of as and bs obtained by taking the
integral parts of multiples of the golden number. Curiously, the mathe-
matician John Conway refers to these as musical sequences.

A particular class of irrational numbers is comprised of the quadratic
surds, that is, all irrational numbers x which satisfy equations

, where coefficients a, b, and c are integers, and a is
positive. In general there are two solutions x which satisfy any given
equation. We are concerned here only with positive values. Binary
sequences derived from quadratic surds manifest another dimension of
self-similarity. Example 9 displays part of the binary sequence determined
by . With the help of a colleague at the Eastman School of Music,
James Croson, we have produced a taped rhythmic realization of a
portion of this binary sequence that articulates this other dimension of
self-similarity.6 The second line of numbers represents the integral parts
of multiples of . The binary sequence is shown as Level 1. When the
difference between two adjacent integral parts is 1 a small a appears on
Level 1, and when the difference is 2, a b appears. On the tape, bs and as
were distinguished as accented and unaccented elements, respectively.

#a
n------

θ{ } 1 θ{ }–

ax2 bx c+ + 0=

2

2
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EXAMPLE 8

Again, the binary sequence is not periodic: it contains no finite subunit
whose continued repetitions constitute the sequence as a whole. This is
guaranteed by the fact that the ratio of #bs over any segment of length n
to n approximates the irrational value . By element 46, there have
been 19 bs, and , a good approximation to .

As in all such sequences, one of the elements (here b) occurs less often
than the other. Furthermore, the bs cannot occur twice in succession, and
so Level 1 is partitioned into subunits of 2 or 3 elements, each subunit
concluding with a b. Level 2 symbolizes this partitioning, where the
larger subunit is labeled upper-case B, the smaller upper-case A. In this
sequence as well, the Bs occur only singly, and partition Level 2 into
two- or three-element subunits, now with each subunit beginning on a B.

2{ }
19 46⁄ 0.413…= 2{ }
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EXAMPLE 9: RHYTHMIC SEQUENCE GENERATED BY 2 1.4142135… 1 2 2 2 …, , , ,[ ]= =

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

0 1 2 4 5 7 8 9 11 12 14 15 16 18 19 21 22 24 25 26 28 29 31 32 33 35 36 38 39 41 42 43 45 46 48 49 50 52 53 55 56 57 59 60 62 63 65 66 67 69 70 72 73 74 76 77

1 a a b a b a a b a b a a b a b a b a a b a b a a b a b a b a a b a b a a b a b a a b a b a b a a b a b a a b a

2 B A B A B A A B A B A A B A B A B A A B A B

3 a a b a b a a b a

4 B A B

a b A B A a a b A

a a b B B A A b a a b B

largest integer less than or equal to x

n 2[ ]

n 2[ ] n 1–( ) 2[ ]– 1 a→= = = =

n 2[ ] n 1–( ) 2[ ]– 2 b→= = = =

x[ ] =
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Level 3 in turn symbolizes this partitioning, with the larger a standing for
each two-element subunit of Level 2 and b for each three-element sub-
unit. Level 4 performs the same action on Level 3. Note that Level 3 is
the same pattern as Level 1, and Level 4 reproduces Level 2. This proce-
dure can obviously be extended indefinitely: each odd-numbered
sequence is a reproduction of Level 1 and each even-numbered one
reproduces Level 2. In fact, even- and odd-numbered sequences are, in a
sense, retrogrades, which can be demonstrated by considering negative
values for n.

Because the binary sequence is reproduced in augmentation at higher
levels, if an accelerando is introduced, and elements are dynamically
phased in and out, the pattern will return to its original state. This is a
possible rhythmic analogue of the pitch phenomenon known as Shepard
tones.7 We attempted to implement this Shepard tone effect on our taped
rhythmic realization.

* * *

The high degree of regularity produced in the binary sequence
determined by  is a reflection of the periodicity of its continued frac-
tion representation, a property shared by all quadratic surds. Continued
fractions are also intimately linked to well-formed scales and their duals.
The basic definitions concerning continued fractions are presented
below. For more detailed information, see Hardy and Wright 1979,
Chapter 10.

Every real number has a representation as a continued fraction. A
rational number  is represented by a finite continued fraction, that is,
a number of the form

.
.

.

where t0 is an integer, and the terms ti are positive integers for all .
The compact notation  is used for convenience. An irrational
number has a unique representation as an infinite continued fraction.

2

a b⁄

t0
1

t1

1

t2 +
------------+

----------------------+

1
tN
-----+

i 0>
t0 t1 …tN, ,[ ]
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The rational numbers  are called
the convergents of the continued fraction. In the case of an irrational
number , the convergents approach θ as a limit. That
is, we can approximate θ as closely as we wish by a convergent

 with sufficiently many terms. The convergents are the best
approximations to θ in the sense that if  is a convergent in lowest
terms, there is no rational number with denominator less than or equal to
b that is closer to θ. Finally, if  is a convergent where ,
we can define semi-convergents to be the numbers

.

Convergents and semi-convergents are called odd or even, according to
whether k is odd or even. A semi-convergent may be thought of as the
best approximation to θ from one side, that is, an even semi-convergent
is the best approximation from below and an odd semi-convergent is the
best approximation from above.

All quadratic surds have continued fractions in which the terms repeat
after a certain point, i.e., for all sufficiently large integers k, there exists
some positive integer i such that . Such continued fractions are
called periodic, and a continued fraction is periodic if and only if it repre-
sents a quadratic surd. In the case of the continued fraction of , every
term after the first is 2: . In the case of

,

the golden number, discussed above in connection with Penrose tilings,
the continued fraction is the simplest of all: .

Recalling a result from Carey and Clampitt 1989, a generating interval
of size θ determines a hierarchy of well-formed scales whose cardinalities
are the denominators of the sequence of convergents and semi-
convergents to θ. The hierarchy thus contains a finite number of scales
when θ is rational, and an infinite number when irrational. For example,
if , its continued fraction begins 

, and the “best” approximations to θ are , , , , ,
, , , and so on, forming the sequence of convergents and

semi-convergents to . The sequence is infinite, because 
is an irrational number. The cardinalities of the well-formed scales in the
hierarchy are therefore the denominators (1), 2, 3, 5, 7, 12, 17, . . . ad
infinitum. The scale of cardinality 12 is the chromatic scale in
Pythagorean tuning, with 7 steps having the ratio  and 5 having
the ratio .

t0[ ] t0 t1,[ ] t0 t1 t2, ,[ ] … t0 t1 …tk, ,[ ], , ,

θ t0 t1 t2 …, , ,[ ]=

t0 t1 … tk ], , ,[
a b⁄

t0 t1 … tk ], , ,[ tk 1>

t0 t1 … tk 1– 1, , , ,[ ] t0 t1 … tk 1– 2, , , ,[ ] … t0 t1 … tk 1– tk 1–, , , ,[ ], , ,

tk tk i+=

2
1 2 2 2 …, , , ,[ ]

φ 5 1+
2

---------------=

1 1 1 …, , ,[ ]

θ log23 2⁄= 0 1 1 2 2 3 1 5 2 23, , , , , , , , , ,[
… ] 0 1⁄ 1 1⁄ 1 2⁄ 2 3⁄ 3 5⁄
4 7⁄ 7 12⁄ 10 17⁄

log23 2⁄ log23 2⁄

256 243⁄
2187 2048⁄
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Each of these scales has an associated pattern, and the finite or infinite
set of these patterns will be referred to as the scale pattern hierarchy. The

 scale pattern hierarchy begins <ab>, <baa>, <babaa>,
<aaabaab>, <aabababaabab>, et cetera. Since each of these patterns has a
dual, we can consider the infinite set of these duals to be the dual hierar-
chy. See Example 10.

To recapitulate: a real number θ has associated with it a hierarchy of
well-formed scales. This hierarchy in turn gives rise to a hierarchy of scale
patterns. The duals of these scale patterns make up the dual hierarchy.

How is the dual hierarchy related mathematically to the original pat-
tern hierarchy? As stated previously, the well-formed scales generated by
θ are sets of fractional parts of multiples of θ and the cardinalities of these
sets are determined by the continued fraction of θ. It turns out that the
dual hierarchy is embodied in the binary sequence which is determined
by integral parts of multiples of θ.

For example, let us consider the binary sequence of . Example
11 reproduces Example 6 with asterisks placed at certain points below
the binary sequence. Comparing Examples 10 and 11 shows that the
dual of each scale pattern of cardinality n in the hierarchy of  is a
subsequence of length n in the binary sequence. These sequences extend
from the origin to an asterisk. One finds the dual in a positive direction
(to the right from the origin) if the associated convergent or semi-
convergent is even, in a negative direction (to the left from the origin) if
the associated convergent or semi-convergent is odd. As Example 10
shows, a number of the scale patterns in the hierarchy of  are
self-dual. As it happens, up to this point the only scale patterns which are
not self-dual are those with cardinalities 7 and 17.

The most redundant structures arise from the golden number. The
pattern hierarchy and the dual hierarchy associated with the golden num-
ber are identical, because each scale pattern is its own dual. The pattern
hierarchy associated with φ is the only self-dual hierarchy. Thus one
obtains the same results whether one takes fractional or integral parts.
Because the continued fraction of φ is , there are no semi-
convergents, only full convergents. The cardinalities of the scales as well
as the entries in the associated  arrays are all Fibonacci numbers.

If we group elements of the binary sequence of φ to obtain higher level
sequences, as we did in the case of , the sequences are all identical
augmentations of the original binary sequence. Canright (1992) suggests
exploiting the ultimate degree of regularity available in this dimension of
self-similarity.

* * *

log23 2⁄

log23 2⁄

log23 2⁄

log23 2⁄

1 1 1 …, , ,[ ]

2 2×

2
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1 1

1 1

1 1

1 1

1 2

1 2

1 2

1 2

2 3

3 2

3 2

2 3

2 5

4 3

4 3

2 5

5 7

5 7

5 7

5 7

7 10

5 12

12 17

17 12

17 12

12 17

5 12

7 10

2

29 <aababaababaabababaababaababab> <bbababbababbabababbababbababa>

Pattern Hierarchy Dual Hierarchy

<ab> <ab>

<baa> <bba>

<babaa> <bbaba>

<aaabaab> <abababb>

<aabababaabab> <abababbababb>

<bbababbababbababa><baabaabaaababaaa>

3

5

7

12

17

EXAMPLE 10: THE PATTERN HIERARCHY AND THE DUAL HIERARCHY ASSOCIATED WITH log2
3
2
--
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EXAMPLE 11: THE DUAL HIERARCHY EMBODIED IN THE

BINARY SEQUENCE OF 

Any realization of the binary sequence, no matter what the value of the
generator, partakes of the self similarity that we first encountered in the
diatonic scale. This self similarity makes the well-formed scale a very effi-
cient information system, assuring that any sample reveals as much infor-
mation as possible about the status of the whole, and making for an
attractively complex system in which it is nevertheless easy to navigate,
and an easy one to learn and remember.

NOTES

1. An equivalent class of scales, called Moments of Symmetry, or MOS,
was defined by Ervin Wilson in a private communication to John
Chalmers in 1964, and was discussed in Chalmers 1975.

2. Hucbald shows the decomposition of nine intervals from the minor
second through major sixth as follows: “Thus whereas the first inter-
val is adjacent to equality itself, which it succeeds in the order of
musical intervals, it appears when doubled to produce the second
interval. But this is not precisely true, as will be discussed later.
Therefore this second interval is regarded as being a certain amount
more than the first one. The third interval consists of the first plus the
second, that is, it has in itself as great a span as these together; the
fourth interval consists of two of the second; the fifth, of the first plus
two of the second; the sixth, of three of the second; the seventh, of
the first and three of the second; the eighth, of four of the second;
and the ninth, of the first and four of the second.” (Babb 1978, 18.)

n: –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12

: –3 –3 –2 –2 –1 0 0 1 1 2 2 3 4 4 5 5 6 7

binary 
sequence:

a
*

b a
*

b b a b
*

a b a b b
*

a b a b b
*

n log2
3
2
--

log2
3
2
--
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Despite his apparent awareness of the incommensurability of tones
and semitones in Pythagorean tuning, he nonetheless parses the
minor sixth as equal to four major seconds.

Prosdocimo, on the other hand, is particularly lucid here, provid-
ing an account of consonant intervals in full accord with Example 3,
and notes the existence of what we have just labeled Myhill’s Prop-
erty: “It must be known, too, that any consonance save the unison, as
well as every dissonance, is found in two inflections, the major and
the minor. . . . [With regard to consonances t]he major third, then is
that which contains two whole tones, the minor third is that which
contains a whole tone with a semitone. The major fifth is that which
contains three whole tones with one semitone and is that fifth which
is counted among the perfect consonances, and which musical
authors define as consisting of the sesquialtera proportion; the minor
fifth is that which contains two whole tones with two semitones and
is not a consonant interval but is counted among the intervals that
are truly discordant. The major sixth is that which contains four
whole tones with one semitone, the minor sixth that which contains
three whole tones with two semitones. The major octave is that
which contains five whole tones and two semitones. . . .” (Herlinger
1984, 45–47.)

Further, he writes: “every major interval found between the unison
and the fifth interval (excluding both of these) contains no semitone;
the minor interval is found to contain only a single semitone. Every
major interval found between the fifth and the octave (including the
fifth but excluding the octave) contains only a single semitone;
the minor interval is found to contain two semitones.” [p. 53.]
Prosdocimo’s observations are verified in columns 3 and 6 (no. of
m2s) in Example 3.

3. Prosdocimo was aware of this invariance in the diatonic system, find-
ing it important enough to be listed among his four intervallic rules:
“The third rule is this; that any major interval exceeds the same
minor interval by a major semitone; from which it follows that in
reducing a major interval to its minor form, or vice versa, it is neces-
sary only to add or subtract a major semitone.” (Herlinger 1984,
55.) Given Prosdocimo’s pro-Pythagorean, anti-Marchetto stance,
“major semitone,” signifies apotomē  which indeed is the difference
between the whole tone and the diatonic semitone (Prosdocimo’s
“minor semitone”). Equation 1.3 asserts that there will be such an
invariance in every MP scale.
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4. This scale is a “neutral third” scale: The fifth mode of this scale has
the following values: (0, 200, 350, 500, 700, 850, 1050). If we asso-
ciate the lowest pitch with the note C, then there are three major/
minor triads: on C (0, 350, 700), F (500, 850, 1200) and G (700,
1050, 1400). Despite the fact that it seems possible to “derive” this
scale from the diatonic, it is in fact of a radically different nature, as is
apparent from the pattern of steps.

An interesting relationship exists between the neutral third scale
and Hauptmann’s major and minor modes in Just Intonation. The
two modes are arranged in thirds, originating on the same pitch:

The notes are put into scale order starting on C:

Geometric means are taken between comparable notes in both scales
to form a composite scale:

The basic pattern of this mode <abbabab> is realized here with the

ratio as the a step, and  as the b. Note that the values here are,

of course, frequency ratios, not logarithms. The actual logarithms are

all within four cents of those given at the beginning of this note.

F a C e G b D

F a C e G b D

C D E F G A B C

Major

C D E F G A B C

minor

neutral

b b b

1
1
-- 9

8
-- 5

4
-- 4

3
-- 3

2
-- 5

3
-- 15

8
----- 2

1
--

b b b
1
1
-- 9

8
-- 6

5
-- 4

3
-- 3

2
-- 8

5
-- 9

5
-- 2

1
--

1
1
-- 9

8
-- 3

2
--

4
3
-- 3

2
-- 8

3
-- 27

8
-----

2
1
--

9
8
-- 32

27
-----
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5. Another view of the role of the triad in the well-formed diatonic scale
is presented in Carey and Clampitt 1989. See pages 203–5. The dis-
cussion there concerns the three distinct automorphisms of a seven
note set, which give rise to the three generic interval cycles: steps (or
sevenths), thirds (or sixths), and fifths (or fourths). The cycle of
thirds (Major and minor) is some rotation of <MmMmMmm>, the
dual of the diatonic. There is also some analogy here to the notion of
“second order” maximally even sets in Clough and Douthett 1991.
Clough and Douthett propose that the triad is second order maxi-
mally even with respect to the diatonic.

6. We presented two versions of this realization at the 1995 annual con-
ference of the Society for Music Theory in New York City. Croson
has subsequently used this binary sequence as the basis for a more
extended electronic composition.

7. See Shepard (1964). For another type of rhythmic realization of the
Shepard tone paradox, see Jean-Claude Risset (1989).
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	To see a World in a Grain of Sand
	And a Heaven in a Wild Flower
	Hold Infinity in the Palm of your Hand
	And Eternity in an hour
	William Blake, “Auguries of Innocence”
	EXAMPLE 1

	1.
	2–1
	[01]
	1
	2.
	2–2
	[02]
	2
	3.
	2–3
	[03]
	3
	4.
	2–4
	[04]
	4
	5.
	2–5
	[05]
	5
	6.
	3–1
	[012]
	1
	7.
	3–6
	[024]
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	8.
	3–9
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	5
	9.
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	3
	10.
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	[0123]
	1
	11.
	4–21
	[0246]
	2
	12.
	5–1
	[01234]
	1
	13.
	5–33
	[02468]
	2
	14.
	5–35
	[02479]
	5
	15.
	6–1
	[012345]
	1
	16.
	7–1
	[0123456]
	1
	17.
	7–35
	[013568a]
	5
	18.
	8–1
	[01234567]
	1
	19.
	9–1
	[012345678]
	1
	20.
	10–1
	[0123456789]
	1
	21.
	11–1
	[0123456789a]
	1
	EXAMPLE 2: THE 21 NONDEGENERATE WELL-FORMED
	SETS IN THE TWELVE-NOTE UNIVERSE

	1
	m2
	1
	0
	M2
	0
	1
	2
	m3
	1
	1
	M3
	0
	2
	3
	P4
	1
	2
	A4
	0
	3
	4
	d5
	2
	2
	P5
	1
	3
	5
	m6
	2
	3
	M6
	1
	4
	6
	m7
	2
	4
	M7
	1
	5
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	1
	2nds
	2
	3rds
	3
	4ths
	4
	5ths
	5
	6ths
	6
	7ths
	EXAMPLE 4: DISTRIBUTION OF HALF STEPS IN DIATONIC INTERVALS
	COMPARED WITH HALF STEPS PER OCTAVE

	N
	cardinality of set with MP
	7
	d
	span
	2 = span of a third
	ad
	two sizes of
	Maj 3rd
	bd
	intervals of span d
	min 3rd
	m
	multiplicity of bd
	4 (no. of min 3rds)
	g
	multiplicity of b1
	2 (no. of min 2nds)
	x
	b1 content of ad: no. of b1s in ad
	0 (no. of min 2nds in Maj 3rd)
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	.
	*�*�*
	g
	2
	5
	4
	3
	g
	g
	g
	g
	g
	4
	3
	2
	5
	7
	5
	7
	5
	3
	2
	2
	3

	*�*�*
	n:
	–5
	–4
	–3
	–2
	–1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	:
	–3
	–3
	–2
	–2
	–1
	0
	0
	1
	1
	2
	2
	3
	4
	4
	5
	5
	6
	7
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	–3
	–2
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	–1
	0
	0
	1
	1
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	3
	4
	4
	5
	5
	6
	7
	binary sequence:
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	b
	b
	a
	b
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	a
	b
	a
	b
	b
	*
	a
	b
	a
	b
	b
	*
	EXAMPLE 11: THE DUAL HIERARCHY EMBODIED IN THE
	BINARY SEQUENCE OF
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