'Round Fourier

A journey in harmonic analysis of pc-sets

Scales & balances

☐ 'Fourier balances': a view on the inner symmetry of chords

Lewin's call for Fourier

- Fourier = the hidden periods inside something
- Enhancing the structure : algebra
 - the interval function is messy (convolution of characteristic functions), but turns into a simple product when 'Fourierized.

$$1_A * \tilde{1}_B(k) = \sum_i 1_A(i) \times 1_B(i - k) = \sum_{\substack{i \in A \\ i - k \in B}} 1$$

$$\mathcal{F}(1_A * \tilde{1}_B) = \mathcal{F}(1_A) \times \mathcal{F}(\tilde{1}_B)$$

Lewin's call for Fourier: an example

 $\{0,1,4,5,8\}$

For each pc, set a wheel in motion

Lewin's call for Fourier: an example

 $\{0,1,4,5,8\}$

Values for t=1,2,3,4,5,6 give Lewin's properties

This vanishes when there are as many odd as even pc's: this the whole-tone property, or Fourier 6 in the 2001 paper

Lewin's call for Fourier: an example

 $\{0,1,4,5,8\}$

A measure of Imbalance on Fourier balance 6

The imbalance of set m for Fourier balance d is precisely | fourier(m, d) |

Hence the connection between Lewin's work and Clough and Douthett's :

|fourier(d-MEset, c/d)| $\approx d \ge$ |fourier(any d-set, any t)|

Fourier as a powerful tool

- □ Vuza and RCMC : proving Hajòs theorems (1990)
 - Characterization of *some* subsets: tiling, with no regularity
- Lagarias and Wang's theorem (1996)
 - A harder version of a theorem by Vuza's, uses difficult results on zeroes of Fourier series
- Babbitt's hexachord theorem is a one-liner with Fourier
- ☐ Similarly, explains why complement of ME set is ME too (more or less: their Fourier transforms are opposite) (perhaps also thm 3.1).
- Wild's Trichords Give Palindroms

Fourier as a criterion

Fuglede's spectral conjecture (1974)

A spectral set: {0,3,5,10}

fourier
$$(sp, t) = 1 + e^{\frac{i\pi t}{2}} + e^{\frac{5i\pi t}{6}} + e^{\frac{5i\pi t}{3}}$$

The spectral condition holds:

diff =
$$\{0, 3, 6, 9\}$$
 - $\{0, 3, 6, 9\}$ = $\{-9, -6, -3, (0,), 3, 6, 9\}$
diff // fourier $(sp, t) = \{0, 0, 0, 0, 0, 0, 0\}$

Fourier as a criterion

- Fuglede's spectral conjecture
 - tiling <=> 'spectral'
 - mostly (and probably) true
 - generated by class IIa pc-sets

An aside on the tiling property

- Very often a tiling 'chord' reduces to a smaller one in a smaller universe.
- cf. R. Cohn's cycles
- □ This means $t \rightarrow$ fourier(m, t)=0 is p periodic for some p < n.

Return to Fuglede: the conjecture is false!

- Counter example: Terence Tao, 2003
- \square The universes are products of cyclic groups (e.g. $(\mathbb{Z}/3\mathbb{Z})^6$)
- Not unfamiliar ground (G.I.S.) for Lewin's fans

Hadamard matrices

- Counter-examples use Hadamard matrices
 - ☐ The columns are mutually orthogonal
- Cf. Lewin's balances

hadamard =
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & e^{\frac{2i\pi}{3}} & e^{\frac{2i\pi}{3}} & e^{\frac{4i\pi}{3}} & e^{\frac{4i\pi}{3}} \\ 1 & e^{\frac{2i\pi}{3}} & 1 & e^{\frac{4i\pi}{3}} & e^{\frac{4i\pi}{3}} & e^{\frac{2i\pi}{3}} \\ 1 & e^{\frac{2i\pi}{3}} & e^{\frac{4i\pi}{3}} & 1 & e^{\frac{2i\pi}{3}} & e^{\frac{4i\pi}{3}} \\ 1 & e^{\frac{4i\pi}{3}} & e^{\frac{4i\pi}{3}} & e^{\frac{2i\pi}{3}} & 1 & e^{\frac{2i\pi}{3}} \\ 1 & e^{\frac{4i\pi}{3}} & e^{\frac{2i\pi}{3}} & e^{\frac{4i\pi}{3}} & e^{\frac{2i\pi}{3}} & 1 \end{pmatrix};$$

Simplify[hadamard.hadamard[†]]

Back to square one

- Hadamard matrices: originally intended for weighing problems!
- Balancing true and forged coins

The end

 diff // fourier (sp, t)

 $\mathbf{fourierTrans}(\{0,\,1,\,4,\,5,\,8\},\ t)$

$$1+e^{\frac{t\pi t}{6}}+e^{\frac{2t\pi t}{3}}+e^{\frac{5t\pi t}{6}}+e^{\frac{4t}{3}}$$

hadamard =
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & e^{\frac{2i\pi}{3}} & e^{\frac{2i\pi}{3}} & e^{\frac{4i\pi}{3}} & e^{\frac{4i\pi}{3}} \\ 1 & e^{\frac{2i\pi}{3}} & 1 & e^{\frac{4i\pi}{3}} & e^{\frac{4i\pi}{3}} & e^{\frac{2i\pi}{3}} \\ 1 & e^{\frac{2i\pi}{3}} & e^{\frac{4i\pi}{3}} & 1 & e^{\frac{2i\pi}{3}} & e^{\frac{4i\pi}{3}} \\ 1 & e^{\frac{4i\pi}{3}} & e^{\frac{4i\pi}{3}} & e^{\frac{2i\pi}{3}} & 1 & e^{\frac{2i\pi}{3}} \\ 1 & e^{\frac{4i\pi}{3}} & e^{\frac{2i\pi}{3}} & e^{\frac{4i\pi}{3}} & e^{\frac{2i\pi}{3}} & 1 \end{pmatrix}$$

 $\textbf{Simplify}[\textbf{hadamard.hadamard}^{^{\dagger}}]$

$$\begin{pmatrix} 6 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{pmatrix}$$

Never, never misunderestimate Fourier!