Evanston, oct. 24th

Rhythmic Canons, Galois Theory, Spectral Conjecture

by Emmanuel Amiot Perpignan, France

Rhythmic Canons

- What is a rhythmic canon ?
- Mathematical tools
- Canons modulo p
- Transformation, reduction, conservation

Rhythmic Canons

- A canon is a number of voices playing the same tune at different onsets.
- A rhythmic canon is a number of voices playing repeatedly the same rhythmic pattern at different onsets.

A rhythmic canon is periodic (here modulo 16)

Rhythmic Canons

- The rhythmic pattern is called **inner voice**,
- The set of onsets is the **outer voice**
- Together they tile a cyclic group

Maths for canons

A direct sum

 $A \oplus B = \mathbb{Z}/n\mathbb{Z}$

- Exponentiation $A(x) = \sum_{k \in A} x^k$
- Condition (T₀)

 $A(x) \times B(x) = (A \oplus B)(x) \equiv 1 + x + \dots x^{n-1} \pmod{X^n - 1}$ $\{0, 1, 3, 6\} \oplus \{0, 8, 12, 4\}$ $(X^6 + X^3 + X + 1) (X^{12} + X^8 + X^4 + 1)$ $X^{188} + X^{145} + X^{134} + X^{213} + X^{112} + X^{111} + X^{9}X^{10}X^{8} + X^{19} + X^{19}X^{11} + X^{111} + X^{11} +$

Where does (T₀) make sense ?

- 0 and 1 are elements of any field
- 'Tiling modulo p' means '(T₀) holds in $\mathbb{F}_{p}[X]$ '

Chinese rhythmic canon theorem (2002): If A(x) B(x) = I + x + ... xⁿ⁻¹ mod xⁿ - I in all \mathbb{F}_{p} [X], then it holds in \mathbb{Z} [X].

Galois theory in \mathbb{F}_q

- First occurence : Johnson's problem
- {0 | 4} and its augmentations tile with period a multiple of 15, because $I+X+X^4$ splits in \mathbb{F}_{16}

Theorem I (december 2001)

Several other cases suggested following question:

Is there a 'local to global' approach for the general tiling problem ?

Galois theory in \mathbb{F}_{P}

Theorem 2 (april 2004)

For any finite (non empty) subset $A \subset \mathbb{N}$, for any prime p, there exists $B \subset \mathbb{N}, n \in \mathbb{N}^*$ $A(X) \times B(X) \equiv 1 + X + X^2 + \dots X^{n-1} \pmod{X^n - 1, p}$

> «Any rhythmic pattern makes a canon — modulo p»

> > Example with 0 | 4 :

Conditions (I_I) and (T)

- Remember A(X).B(X)=I+X+...Xⁿ⁻¹ mod Xⁿ
 I.
- Cyclotomic factors : irreducible factors of $I+X+...X^{n-1}$ must divide A(X) or B(X). They are the Φ_d , d | n.

• Let
$$R_A = \{d ; \Phi_d | A(X)\}, S_A = \{p^{\alpha} \in R_A \}.$$

$$(\mathsf{T}_1): \mathsf{A}(1) = \prod_{\mathfrak{p}^{\alpha} \in \mathsf{S}_{\mathcal{A}}} \mathfrak{p}$$

 (T_2) : if $p^{\alpha}, q^{\beta}, \dots \in S_A$ then $p^{\alpha}.q^{\beta} \dots \in R_A$

Conditions (T_1) and (T_2)

Theorems (1998, Coven-Meyerowitz)

- If A tiles, then (T_1) is true
- If (T_1) and (T_2) are true, then A tiles
- If A tiles and $|A|=p^{\alpha}q^{\beta}$, then (T_1) and (T_2) are true.

Also a very special case with 3 prime factors in 2000 (Lagarias-Wang)

Transformations

- Other transformations
 - duality : $A \oplus B = B \oplus A$!
 - dilatation

- affine transform
- Useful for classifying and building up new canons (cf.Vuza canons, in a minute)

Conservation

Theorem 3 (2004):

All usual transformations preserve conditions (T_1) and (T_2)

Basic lemma : factorizing the metronome

 $I+X^{k}+X^{2k}+...X^{(p-1)k}$ is the product of the Φ_d whence d is a divisor of n=p k, but not a divisor of k

All this is Galois theory (in cyclotomic fields)

Vuza canons

- Definition: no internal period,
- (unlike (say) {0,1,4,5} + {0,2,8,10})
- Hajòs groups (M.A.) good/bad
- Rather scarse
- Popular with composers

Vuza canons

How do we find them ?

- Difficult to get them all
- Algorithms exist that give a few solutions
- Transformations allow to find much more
- Exhaustive search achieved for n=72 and n=108 (january 2004, H. Fripertinger)

Fuglede's conjecture

Conjecture (Fuglede 1974)

- A set A tiles by translations iff it is spectral (meaning L (A) admits a Hilbert basis)
- True in a number of cases (A convex, set of translations a group...)
- False in high dimension (T.Tao, 2003)

Fuglede's conjecture

- A link with (T_1) and (T_2)
- Theorem : (Isabella Laba 2000)

If A verifies (T_1) and (T_2) then A is spectral.

If A is spectral then (T_1) is true.

Last step

- If A tiles but (T_2) is false,
- If A is not Vuza, then either inner rhythm A or outer rhythm B reduces to a smaller canon ((T₂) still false by theorem 3)
- the process cannot end with the trivial canon ({0} \oplus {0}) but (T₂) is true here !
- Hence it ends up with a Vuza canon.

Latest news

Theorem 4 (may 2004)

- A canon with (T₂) false can only occur in a non-Hajòs group (and reduces to a Vuza canon)
- Any tiling of a Hajòs group is spectral

(T₂) is true for a tiling of an interval; checked also by computer in \mathbb{Z}_{72} and \mathbb{Z}_{108}

The end ?

- Are all rhythmic canons spectral sets ? this should be found out via cooperation between different fields (musica, algebra, perhaps topology...)
- Both sides ot the Atlantic will be needed.

Emmanuel Amiot manu.amiot@free.fr http://canonsrythmiques.free.fr