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Abstract
Proving a conjecture of Jason Yust about some products of Fourier coefficients of ME sets.
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NOTATIONS

• Zn is the cyclic group with n elements.
• for a pc-set A, i.e. a subset of the set of pitches modelled by some cyclic group
Zn, the Fourier transform of A is the sequence of complex Fourier coefficients

fA(t) = f(t) =
∑
k∈A

e−2iπkt/n

i.e. the usual Fourier transform of the characteristic function of A.
• bxc is the integer part of real x, e.g. bπc = 3.

1. THE CONJECTURE

Working on the correlation of phases (angular directions) of Fourier coefficients of pc-
sets (cite a bunch of references), Jason Yust noticed (!) a significant fact that can be best
expressed in terms of product of coefficients:

Main conjecture 1. Consider a Maximally Even set A ⊂ Zn with c elements, and let
a, b ∈ N∗ partition c: a+ b = c. Then f(a)f(b)f(c) is real negative.

Looking at the phases of coefficients, this means an anti-correlation between the sum of
phases of coefficients f(a), f(b) and f(a+ b):

Φa+b = Φa + Φb + π

if, say, f(a) = |f(a)| eiΦa .
For example, with A = {0, 2, 4, 7, 9} ⊂ Z12 (a pentatonic collection), taking a =

3, b = 2, c = 5 one gets

f(3)f(2)f(5) = e−2iπ/3.1.(2 +
√

3)eiπ/3 = −2−
√

3.
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2. USEFUL FACTS

The effect of transposition on Fourier coefficients is a rotation in the complex plane.
More precisely,

Proposition 1. fA+τ (c) = fA(c)× e−2iπτc/n.

Complementation, on the other hand, turns all coefficients (except the 0th) into their
opposites.

The most interesting type of ME sets (including diatonic and pentatonic collections,
for instance) occurs when the cardinality is coprime with that of the chromatic universe:
c ∧ n = 1. Quinn called them type I ME sets.

It is proved in [?] and other places that such ME sets are generated, i.e. up to transposi-
tion it is {0, f, 2f, . . . (c−1)f} (or {f, 2f, 3f, . . . cf}). The generator must be the inverse1

modulo n of the cardinality c, meaning that cf = 1 mod n, almost closing the circle. For
instance, a diatonic collection is generated by a chain of fifths: n = 12, c = f = 7 since
c× f = 49 ≡ 1 mod 12.

The other ME sets are periodic. More precisely

Proposition 2. If c ∧ n > 1, the ME set with c elements in Zn can be constructed by
repetition with period n′ =

n

c ∧ n
of a ME set with c′ =

c

c ∧ n
elements in Zn′ .

For instance, a ME Set for n = 12, c = 8 is {0, 2} ∈ Z3 repeated with period 3, i.e.

{0, 2} ⊕ {0, 3, 6, 9} = {0, 2, 3, 5, 6, 8, 9, 10}.
Please note that this case includes the degenerate/trivial case of regular divisions of the
chromatic aggregate (like a diminished seventh, say), that Ian Quinn called type II-a ME
sets: they are a periodic repetition of a one note ME set. This case could have been treated
apart since the product in the conjecture is then always nil.

The value of Fourier coefficients of any generated pc-set can be computed:

Proposition 3. Let A = {0, f, 2f, . . . (c − 1)f} be a generated pc-set with generator f
and cardinality c in Zn.

Then in general f(t) = eiπ(1−c)t/n sin cftπ
n

sin ftπ
n

.

When the denominator is nil (meaning that n is a divisor of ft) then f(t) = c.

3. PROOFS

Lemma 1. The quantity f(a)f(b)f(c) is invariant by transposition.

Proof. From Prop. 1, transposing any pc-set A by τ multiplies the product f(a)f(b)f(c)

by e−2iπτa/ne−2iπτb/ne−2iπτc/n = e−2iπτ(a+b−c)/n = 1 since a+ b = c. �

This allows to begin our ME set with 0, without loss of generality. Until further notice,
we take A = {0, f, 2f, . . . (c− 1)f}. Using Prop. 3 yields

Lemma 2. f(a)f(b)f(c) = ei(1−c)faπ/nei(1−c)fbπ/ne−i(1−c)fcπ/n
sin fcaπ

n

sin faπ
n

sin fcbπ
n

sin fbπ
n

sin fccπ
n

sin fcπ
n

.

When a+ b = c, only the sines remain: f(a)f(b)f(c) =
sin fcaπ

n

sin faπ
n

sin fcbπ
n

sin fbπ
n

sin fccπ
n

sin fcπ
n

.

1Its opposite works just as fine.
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The denominators are well defined because f, c are coprime with n, hence n cannot
divie fa or fb by Gauss’s Lemma. Already we see that the product of Fourier coefficients
f(a)f(b)f(a+ b) is real valued (this holds for any generated sequence, even when the
ratio of sines appears as 0/0).

It is a good moment to point out that if a product is real positive for a given generated
pc-set, then for its complement the same product will be negative (all three coefficients
being turned into their opposites).

To study the signum of this combination of sines, we are led to scrutinize the integer
and fractional values of expressions like fa

n , making heavy use of

Lemma 3. sin(xπ) is positive when bxc is even, else negative.

For instance, for a diatonic collection, c = f = 7, n = 12. Choosing (say) a = 3, b = 4
we get the combination of sines

sin 7×7×3π
12

sin 7×3π
12

sin 7×7×4π
12

sin 7×4π
12

sin 7×7×7π
12

sin 7×7π
12

=
sin 147π

12

sin 21π
12

sin 196π
12

sin 28π
12

sin 343π
12

sin 49π
12

=
sin(12.25π)

sin(1.75π)

sin(16.33π)

sin(2.33π)

sin(28.583π)

sin(4.083π)

where from the last Lemma, only one sine (sin(1.75π)) is negative: this proves the conjec-
ture for that case.

Notice that omitting the factor π, all these fractions, e.g.
c

n
, belong to G =

1

n
Z, a

monogenous additive group containing Z. In particular,
fc

n
= bfc

n
c +

1

n
, exceeding the

closest integer by the smallest possible value in G.

Let us denote
fa

n
as (fa/n)i + (fa/n)f , where (fa/n)i (resp. (fa/n)f ) is the integer

part of the fraction (resp. the fractional part). We have(
(fa/n)i + (fa/n)f

)
+
(
(fb/n)i + (fb/n)f

)
=
(
(fc/n)i + (fc/n)f

)
but since

1

n
≤ (fa/n)f , (fb/n)f < 1 and (fc/n)f =

1

n
, we must have (fa/n)f +

(fb/n)f = 1 +
1

n
: there is a 1 carry in the addition.

We conclude that (fa/n)i + (fb/n)i + 1 = (fc/n)i, which compels the tally of odd
integers in this identity to be 1 or 3 (one or all). For instance, if n = 12, f = c = 5
and (say) a = 2, b = 3, the fractions evaluate to 0.833, 1.25 and their sum is 2.166: the
sum of the fractional parts, 1.166, exceeds 1 by the smallest possible margin; besides, only
(fb/n)i is odd.

Let us split cases:

Lemma 4. Assume that the pc-set is evenly Maximally Even : fc = 1 mod 2n. Then
f(a)f(b)f(c) is real negative.

Proof. From previous computation and the additional hypothesis, we get
fc xπ

n
=
xπ

n
mod 2π for x = a, b, c,

hence f(a)f(b)f(c) =
sin aπ

n

sin faπ
n

sin bπ
n

sin fbπ
n

sin cπ
n

sin fcπ
n

. Since a/n, b/n, c/n are smaller than 1,

the numerators are all positive.
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If either (fa/n)i or (fb/n)i is even, then the other one must be odd because their sum
(fa/n)i + (fb/n)i = (fc/n)i − 1 is odd by assumption. Hence sin aπ

n > 0, sin cπ
n > 0

and sin bπ
n < 0 (or the reverse), and the conjecture stands.

�

Lemma 5. Assume that the pc-set is oddly Maximally Even : fc = n + 1 mod 2n, i.e.
fc− 1

n
is odd, meaning sin

fcπ

n
= − sin

π

n
.

Then f(a)f(b)f(c) is again real negative.

Proof. Now
fcaπ

n
= aπ +

aπ

n
mod 2π, and similarly for the other fractions. Hence

sin
fcaπ

n
= (−1)a sin

aπ

n
, therefore f(a)f(b)f(c) = (−1)a+b+c

sin aπ
n

sin faπ
n

sin bπ
n

sin fbπ
n

sin cπ
n

sin fcπ
n

.

Since (−1)a+b+c = (−1)2c = +1, we find the same formula as in the last case and a sim-
ilar discussion yields the conjecture, with this time (fa/n)i and (fb/n)i both odd or both
even. �

An example may be useful: n = 15, c = 8, f = 2, c f = 1× n+ 1, a = 3, b = 5 yields

sin aπ
n

sin faπ
n

sin bπ
n

sin fbπ
n

sin cπ
n

sin fcπ
n

=
sin 0.2π

sin 0.4π

sin 0.333π

sin 0.667π

sin 0.533π

sin 1.067π

with again only one negative sine in the denominator (sin(1.067π)).

Now for the last step:

Lemma 6. The conjecture is true for other types of ME sets.

Proof. From Prop. 2 we consider a (type I) ME set A′ with c′ elements in Zn′ and repeat
it with period p to build a ME set A in Zn: A = A′′ ⊕ pZn (with A′′ ⊂ Zn being a fiber
of A′, i.e. the same elements but lifted modulo n). Now we rely on the computation of a
Fourier coefficient for a periodic pc-set:

fA(t) =
∑
k∈A

e−2iπkt/n =
∑

k=k′+jp∈A

e−2iπkt/n =

n′∑
j=1

∑
k′∈A′′

e−2iπ(k′+jp)t/n

=

n′∑
j=1

e−2iπjpt/n
∑
k′∈A′′

e−2iπk′t/n =

n′∑
j=1

(e−2iπpt/n)
j
fA′′(t)

where the sum is often 0, except when p t is a multiple of n in which case the sum is
equal to n′, real positive. In that case, t is a multiple of n′ = n/p. Let t = t′n′, then
e−2iπk′t/n = e−2iπk′t′n′/n = e−2iπk′t′/p and we get fA(t) = n′fA′(t′). (the non nil
coefficients of a periodic pc-set are equal, up to a constant, to those of the projection of the
pc-set on a period. See Fig. 1 for ME Set {0, 3, 5, 7} modulo 9 repeated to build ME Set
{0, 3, 5, 7, 9, 12, 14, 16} modulo 18)

We sum up: if we compute the product fA(a)fA(b)fA(c), it is either (usually) 0, or
n′×fA′(a′)fA′(b′)fA′(c′) with a′+ b′ = c′, the cardinality of A′. Since A′ is a type I ME
set, we have already proved in Lemmas 4 and 5 that this is real negative, and the conjecture
is thus proved in all cases.

�
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FIGURE 1. Fourier amplitudes for a motif mod. 9, right, and the same
motif repeated mod. 18, left


