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Abstract

Sines (and cosines) seem to crop up fairly often in music theory. However, even in the seminal case
of sound signal Fourier decomposition, their use can be questioned, as alternative bases for decom-
position exist both theoretically and practically. Nonetheless, sines appear in many other musical
contexts too. This paper answers the seemingly simple question whether their use is a commodity
grounded on common usage or are there fundamental, systemic reasons for it.
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A good question

This paper was born during a talk in the SMCM convention in London, 2015 [27]. The orator has ex-
pounded some fascinating developments in the then nascent theory of Discrete Fourier transforms of
musical structures (usually pc-sets ! in the context). In this theory, musical objects are decomposed
into sums of sines :

1 n—1 1 .
1,(t) = o kZH) ax cos(2kmt/n) + by cos(2kmt/n) or equivalently = - Z cx exp(2ikmt/n).

At the end of the talk, a distinguished member of the audience asked the following fundamental
question :

Why do you choose the [orthonormal] basis of sines and cosines, while there are infinitely
many other bases to choose from ?

He was actually re-framing a question already written down in his own magnum opus [23], and
in infinite dimensional context. Indeed, even if originally sines and cosines (or complex exponential
functions) have been used to provide decompositions of periodic sounds, this theoretical and seminal
case appears to be ill suited to actual musical sound, if only because the latter is not made of
periodic signals — to begin with, few musical pieces have infinite duration!? Actually, windowed
Fourier transform, wavelets (Haar, Daubechie, Tchamichian, etc.) with finite support (or quick decay)
appear better suited at practical harmonic analysis, and are effectively used for example in many file
compression standards 3.

Faced with an admittedly embarrassing question, the orator found a fairly convincing answer, ar-
guing the simplicity of the differential equations whose solutions are these functions (harmonic
oscillators). This simplicity or even minimality argument has a lot going for it, since William of Oc-
cam’s famous razor. But was there more to it than that? At least in the field of mathematical music
theory ? Or is it another instance of the famous saying* that ‘When your favourite tool is a hammer,
all problems look like nails’? This is the topic of this paper.

1. A pitch-class set is a collection of notes considered modulo octave. One can view these pitch-classes as the names of
notes, and model them as integers modulo 12. This fits in the decomposition in sines because the pc-sets are 12-periodic.

2. Even Satie’s Tango perpétuel or Chopin’s mazurka in F minor must have a beginning in time and all interpretations
(so far) have had an ending of sorts.

3. Recently, Hadamard transform was used on recursively binary rhythms with finer results than Fourier transform or
wavelets, see [29].

4. Known as Maslow’s Hammer, see https://en.wikipedia.org/wiki/Law_of_the_instrument.



1 Other occurrences

Though this may appear as digressive, we will begin by enumerating more evidence of sine functions
in mathemusical publications. It appears in a surprising number of apparently unrelated situations.

1.1 Quantum gauges

There is more than a fashionable trend in some recent efforts at bringing quantum mechanics
concepts in the musical world. One barely touched but promising notion is modeling the human
mind’s choices of interpretations in ambiguous situations (e.g. when an instrumentist strikes a
tritone, is it a diminished fifth or au augmented fourth? this will be determined by subsequent
observation, see [15]) as collapsing a waveform; another more involuted situation uses gauge func-
tions for modelling the notion of tonal attraction (see [11, 12] for instance). Starting from physical
quantities (energy, momentum, gravity) and their analogies with empirical/psychological musical
perceptions (attraction, in tonal music, mostly) the authors postulate a Schrodinger-like equation
admitting these quantities as solutions, more specifically in the form of cosine functions, with the
nice consequence that they retrieve the discrete structure of pitch-classes. This may seem tautolo-
gical (or even a vicious circle) inasmuch quantum mechanics purports to explain discrete changes
between levels, and indeed the author must confess (to his shame) that he was at first unconvinced
by such explorations. There was however some strong experimental evidence to support this line of
research in Carol Krumhansl’'s seminal work [19], which highlights cosines and Fourier transforms
though out of empirical results. Furthermore, this psycho-acoustical evidence is fully in phase with
the theoretical aspects of discrete Fourier transform described in the next section. Moreover, this
field of exploration is promising and in the context of the present paper, could be subsumed under
the heading of section 2.1 where the discretization of sines is explained by limit conditions.

1.2 DFT of rhythms or pc-sets

See [2] for complete references or [6] for an introduction.

Replacing a set (say a pc-set) by its characteristic function provides the advantage of working in a
smooth linear space, often called space of distributions.

For instance the C major triad, or pc-set {0,4, 7}, can be seen as the vector (1,0,0,0,1,0,0,1,0,0,0,0) €
R'2. Natural operations on these distributions are perhaps more important for computer implemen-
tations than for actual musical practice® : the intersection of two pc-sets can be done by termwise
multiplication of their distributions, but their union is only the sum of distributions when the inter-
section is void. Values other than O or 1 can be used to model loudness or weight or redoublings of
a pc, though the meaning of a complex value is anyone’s guess (see however section 3.4). Hereafter
we present objects with a fixed period of n, which could be for instance periodic rhythms with a
duration of n eighth notes, or the seminal case of pitch-class sets reduced to an octave containing
n = 12 notes.

The Fourier transform of a distribution s = (sg,s7,...s,_1) € C" is defined® by another, complex-
valued, distribution : .
VK€ Zn S=) spe M
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All indexes can be taken modulo n, as elements of the cyclic group Z,. The sums Z run on the

whole of the cyclic group Z,. When s = 1, is the characteristic function of (say) a ;c—set A, this
formula reduces to
VK€ Zn In(k)=dy =) e ke,
acA

5. See however [8] and section 3.2 on convolution. Also intersection of sequences was often used by Xenakis,which he
called sieving, while union of disjoint translates of a set are involved in tilings.
6. Other possible definitions differ by a multiplicative constant.



One can express the initial signal as a sum of complex exponentials (which are combinations of sines
and cosines) by inverse Fourier transform :

1 ~ 4 in 2kl
S = E ; Ske+21k€7t/n — Z Sk S + nTE)-

Is this a gratuitous choice of basis for expressing the distribution s ? This is the question that we are
studying.

A first, though partial answer, is that we enjoy many fascinating properties and significations of the
values of the sy, the Fourier coefficients.

Of course, since t — et?*/n has period n/k, one can see at a glance on the Fourier coefficients
whether the signal has periods smaller than n (for instance, if all odd index coefficients are nil, then
n/2 is a period), which is more or less the first motivation for Fourier decompositions in general. It
is perhaps counterintuitive that discrete periodic sequences are still sums of (discrete) sines, see for
instance Fig. 1.

1+ 2cos %t
FIGURE 1 — Characteristic function of the diminished seventh {0, 3,6,9} as f Potential

harmonics appear as dotted lines.

Less trivially, for the characteristic function of a pc-set A, this pc-set is Maximally Even 7 if and only
if some precise Fourier coefficient has maximal magnitude®. For instance, any diatonic scale, i.e.
any translate of pc-set {0,2,4,5,7,9,11} has the magnitude of its fifth (or seventh) coefficient equal to
2 + /3 ~ 3.73205, which is the maximal value for this coefficient among all seven-note scales. This
can be understood as expressing that this scale is closest to a regular heptagon in the chromatic
circle as shown on Fig. 2. Indeed, in the simpler case of a 4-notes scale, the largest 4th coefficient
is found for a diminished seventh, which is drawn on the chromatic circle as a perfect square; for
8 notes the winner is the octatonic scale, the complement of the latter. Similarly, rhythms like the
tresillo xooxooxo or cinquillo xxoxxoxo are Maximally Even (and hence Euclidean in the sense of
[16]), being closest to regular 3- or 5-gons. Again this will be revisited in section 3.1.

Hence the size of a specific Fourier coefficients is a measure of a definite musical character : for
pc-sets, diatonicity, chromaticism, even octatonicity 2, a contentious notion for slavic composers, see
[7]. For rhythms, the cinquillos and tresillos exhibit a maximal ternary character which dancers will

7. Informally, Maximally Even Sets or ME-sets are the most evenly distributions of k elements on a circle equally divided
in n, like the chromatic circle. For instance, as proved by Douthett and Kranz, 7 electrons place on 12 sites on the circle
will find a stable configuration if distributed as a diatonic scale.

8. As compared with the same Fourier coefficient for pc-sets with the same cardinality. This was discovered by Ian
Quinn [26] in 2005, see also [3]. Such musical significance is in itself a good factual answer to our initial question, but it
does not explain why this decomposition in sines is significant, or tell whether other decompositions might be as, or more,
meaningful.

9. Respectively considering |as|, [as], [a4].
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FIGURE 2 - Left : Diatonic scales (black) have maximal fifth coefficient among all 7-note scales (gray,
dotted), and are closest to regular heptagons (Right).

appreciate in Caribbean and South-American musics. Also this size is invariant by transposition or
inversion of a pc-set, which means that looking at Fourier coefficients magnitudes factors out the
group action of the dihedral group T/I, leaving only information about shape, which is extremely
convenient (especially when one does not have perfect pitch) and musically significant '°. The other
dimension of these complex coefficients, the phase, also conveniently embodies musical ideas and is
actively studied in recent research, see [28] among many others.

On the whole, many interesting interpretations arise when reading musical objects in the sine basis
of Fourier decomposition. But still this does not prove that there does not exist some other basis,
possibly even more appropriate for musical purposes.

1.3 Anatol Vieru, difference equations, and powers of eigenvalues

There are many situations where the iteration of a transformation asymptotically reduces to a geo-
metric progression. For instance, the Lukas sequence (cousin to the famous Fibonacci sequence) :

2,1,3=2+1,4=1+3,7,11,18,29,47...

1+V5\" 14v5Y)
has for nth element the integer closest to ( +2 ) . For instance, < +2 ) =29.0344 - -:

Generally speaking, this evidences the largest eigenvalue of the linear transformation generating the

sequence, that is to say
W) l) = ()
— =
< fn en-H en—] + en

++/5
2

1
whose matrix is (? }) and eigenvalues . The larger one, the Golden ratio, appears as the

limit of the (rational) quotient ¢,/{, 1, as Leonardo da Pisa had found around 1200.

In the same vein, in the 1840’s astronomer Urbain Leverrier determined the largest eigenvalue of a

4 x 4 matrix by studying the asymptotic behavior of its powers, a crucial step in computing the orbit

of Neptune. Returning to music, eigenvalues asymptotically occur even more interestingly in several

cases :

— Anatol Vieru iterated the difference operator on cyclic lists of pc-sets and observed that this

procedure produces a periodic sequence after a few steps. For instance, numbering pitch-
classes from O to 11 and starting from (O, O, 7, 7, 4, 4, 3, 3, 4, 4, 7, 7) one gets

0-0=0,0-7=57-7=0,...)=(0,5,0,3,0,1,0,11,0,8,0,7)

10. As will be argued below, these magnitudes encapsulate no more and no less than the intervallic information of a
pc-set.
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and one soon arrives at (4,4,0,8,8,0,4,4,0,8,8,0) which the difference operator permutates
circularly. See [9] for a seminal analysis.

— Composer Tom Johnson has explored autosimilar melodies : when extracting out of some per-
iodic sequence one note out of (say) 3, sometimes one finds the initial melody“. In [5] the
question is thoroughly explored mathematically, including studying the effect of such an ex-
traction on a random (not “autosimilar”) sequence. The result is essentially equivalent to Vie-
ru’s : the sequence converges to something autosimilar [here a link to the sound file Attracteur
autosimilaire.m4a].

— The most recent case known to the author is the iteration of a discrete average operator in [17],
with similar results albeit the transformation is not linear.

These examples (approximately for the last one) mostly exemplify the general behaviour of all linear
operators (on modules, not necessarily vector spaces), governed by Fitting Lemma :

LEMME 1. For any linear transformation of a finite dimensional linear space, this space is a direct
sum of two stable subspaces, on which the linear map is respectively nilpotent (it vanishes after
some iterations) and bijective.

When the space is finite, this means that when the nilpotent part has vanished under iteration, what
remains is periodical.

The general idea underlying all these disparate cases is that from a distance, iterating any li-
near transformation looks a lot like multiplying the initial vector by a geometric sequence \"
(where one may have to extend the initial domain of numbers to find A, from integers to galoisian
extensions !2, from reals to complex, from Z;, to a ring extension). Assume for simplicity’s sake that
A € C, then

A= |)\| eie)}\n — |}\|nenie)

and the exponential part e™¥ (what remains after normalization) is a sum of cosine and sine yet
again.

Very generally, when a constant appears in an iteration, there is some fixed point involved : for
Vieru’s persistant sequences we have fixed points of the shift operator, Lukas sequence is a fixed
point of the operator (un)nen — (Un—1 + Un—2)nen in sequences space, and in the next section we will
point out a fixed point of a differential operator. In these situations, convergence is often geometric,
which reminds of the last argument. But all of this is very general, mathematical and abstract. Let
us refresh ourselves by turning to the physical nature of musical sound.

2 Between music and their maths : vibrations

2.1 Harmonic oscillator

Newton’s second law implies that any physical phenomenon wherein the forces exerted depend on
the system’s state can be described by second order differential equations, since the sum of forces
is proportional to the acceleration. A very well known case is the harmonic oscillator (we will leave

aside dampening factors for concision) :
"

y" = —wy.

Here is y measures to physical quantity varying in time (or sometimes space), and y” is its second
derivative whereas w is some real constant depending on the physical data (for instance, the length
of a pendulum). As we have just mentioned, it can be illuminating to consider the solutions to the
equivalent equation y = —y”/w? as fixed points of the differential operator y — —y”/w?, or more
loosely as a comparison between a signal and its second derivative, a perfect correlation (see section
3.1) up to a constant.

11. Ty FFFDFFFDFFFD...) for a definitely Beethovenian example. There are even earlier examples.
12. For instance the Lukas sequence above, taken modulo 12, is periodic with period 24 and can be expressed with
powers of numbers lying in a quadratic extension of the ambient ring, namely Z1,[X]/(X* — X —1).



As some readers will probably know, the space of solutions of this equation is precisely the vector
plane generated by sines and cosines with pulsation w :

y = acos(wt) + bsin(wt).

The simplicity of this equation, leading irrevocably to sine and cosine solutions, is the Occam’s razor
argument provided as answer in the MCM 2015 conference, as related in the preamble. The use of
this principle is prevalent in the elaboration of scientific theories because simple models are easier
to test (falsifiability in the sense of Karl Popper).

But a devil’s advocate would argue that the equation itself is a very simplified model of real situations
which are far more complex (to begin with, producing musical sounds involves movements of more
than single points as involved in the pure harmonic oscillator). Could it be that the sine solutions
are simply products of this oversimplification ?

2.2 D’Alembert’s wave equation

It has been known allegedly since the Pythagorean school that reeds or strings (as in a monochord)
produce harmonic spectra, i.e. superpositions of sounds whose frequencies are multiples of the
fundamental one. This was modelized and proved with the following wave equation, which is derived

in simplistic situations (infinitely thin strings, for instance) :
’u 1 9d%u %
2 viotr

Here x is a position (measured as a distance) and t is time, v is a constant comparable to a velocity ;
u(x,t) measures the swelling of the string at abscissa x and moment t, see Fig. 3 which should be
understood as changing with time.

u(x,t)

FIGURE 3 — A musical string’s shape (strong line) follows a sum of sine vibrations (dotted).

This equation was stated by Jean le Rond d’Alembert in 1729 3. It is a partial differential equation
(PDE), meaning it involves derivatives following time t or space x. Even stating such equations had
only recently been made possible by the invention of differential calculus (Leibniz, Newton). As be-
came clearer when the study of these equations slowly developed, much depends on initial and/or
boundary conditions. They impose, more or less, the method outlined below. Here, considering a
metallic thin string [there is no essential difference for an air column like in the case of a wind ins-
trument] attached at both ends, the value of u there is invariable in time, i.e. (for some adequate
choice of constants)
vt u(0,t) =u(L,t) =0.

13. Learned readers will remember, or even notice, that 1729 =103 + 93 =123 +13.
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Even in this seminal situation, a rigorous derivation of the most general solution was unattainable at
the time 4. A customary method for such (linear) PDE’s involves the superposition principle : a sum
(or linear combination) of solutions is still a solution. As a first step, one searches for solutions with
separated variables, i.e. the (very) particular case when

u(x,t) = W(x) x T(t).
Injecting in the wave equation one finds

W”x) 1 T"(t)

W(x) V2 T(t)

and a function of x equal to a function of the independent variable t must be a constant, independent
of both. For physical reasons !® this constant must be negative. Let us call it —&2, then firstly

W (x) + EW(x) = 0,W(0) = W(L) =0

is a harmonic oscillator equation with boundary conditions which impose

E=&v= %[, W(x) = Asin ? for some integer n.

(the cosine part is forbidden by the value in 0, and the integer n is imposed by sin(éL) = 0.)
Knowing now the pulsation &, one gets the other function T, solution of

T"(t) + E3VT(t) =0,

as a combination of sines and cosines :

t t
T(t)=B sin(%) + Ccos(mw

t
) = Dsin(? +@).

(A, B, C,D are arbitrary constants than can be determined if initial conditions are provided)
Let us point out the most illuminating points of this resolution :

— Spatial and temporal frequencies are proportional — as Wagner’s Gurnemanz shrewdly noticed,
“Zum Raum wird hier die Zeit”.

— There is discretization of the spectrum, which is harmonic : f, = nfy. This is easily understood
for the spatial part, where the nodes (the points where the string does not move) must divide
the whole length by some integer (see Fig. 3), but the corollary that the temporal spectrum is
harmonic vindicates the pythagoreans’ discovery two millenaries before.

— Paradoxically, uncoupling the space and time components forces a coupling of their respective
frequencies. Also this reduces the resolution to the ODE case of the harmonic oscillator, with
its plain sine solutions, fixed points of the squared differential operator.

Of course, we could again argue that such a reduction to a simplistic equation is a biased argument
for the use of sine functions. While the more general solution rebuild from adding up elementary
solutions for all values of n already covers a large ' space of solutions :

nmvt

u(x,t) = Z an sin nTﬂx sin T

neN

+ ¢n)

(leaving aside problems of convergence for the infinite sum, mostly irrelevant in the physical world),
we feel compelled to examine a less frugal model.

14. The more complicated Navier-Stokes PDE governing the behaviours of fluids are still very much unsolved, so much
so that even a partial resolution would be rewarded by one of the seven 1-million prizes of the Cray fondation.

15. Else the solutions (hyperbolic sines and cosines) would be unbounded in time, and the instrument would break.

16. Counterintuitively, its dimension is non countable.



2.3 A more complicated case

It can be argued that the above equation is oversimplified. It is in the nature of a modelization to
stand up insofar as it has not shown its limits, and then to be supplanted by a more refined model,
with perhaps brand new objects as solutions.
Actually, it is not so. A very interesting illustration can be made with the analysis of [open-ended]
tubular bells (also called chimes) published recently in [25] (among other recent papers on the topic).
Taking into account that a tubular bell has non-zero width, the authors eventually derive a more
complicated, fourth order PDE :
*u  %u
o T
where x,t are reduced variables (obtained by adequate choices of length and duration units). We
concentrate on the nature of the solutions, not on the details which are well covered in the published
paper. In substance, it appears that the spectrum is not harmonic !7 (or only approximately), but the
expression of the solutions still unequivocally involves sines.
Computations similar in the method but more arduous lead to elementary solutions W(x)T(t) where
the spatial component W(x) is a combination of trigonometric and hyperbolic (co)sines, and T(t) =
sin(&%t) where £ satisfies the discretizing condition

=0

cosécoshé = 1.

Solutions to this equation are still discrete : &, = 0 < & = 4.73004 < &, = 7.8532 < ..., but no more
harmonic : &, — &, 1 is not a constant (though this quantity quickly converges '® when n grows to
infinity, but these inaudible harmonics are physically irrelevant). The temporal frequencies are are
no more proportional to the &,, but instead to the £2. 19

This study indicates that even in complicated cases, when all else fails, the sines perdure : the super-
position method will always yield sines, because these functions are the solutions of linear ODEs with
constant coefficients, which generalize the harmonic oscillator to any conceivable order but whose
solutions still are [complex] eigenvalues of differential operators, hence sines?°. The MCM Occam
argument actually applies to all solutions of all linear problems (roughly speaking, any oscillating

system) in any dimension2!.

3 Musical operations : IFunc and convolution product

We now return to music theory and its abstract, cultural, and perhaps perceptual, concepts.

3.1 Some music : correlation

Periodicity, in some loose sense, is perhaps the most essential feature of music : most listeners will
expect repetition of the same or partial recognition of the original theme, or some feature at least.
This involves important cognitive capacities which are very useful in other situations, so much so
that recent research encourages therapic use of music as intellectual stimulation, from kindergarten
kids to Alzheimer patients [10].

The degree of repetition after a delay T of some musical object A can be measured by the intersection
of A and A + 7. This applies in the temporal domain as well as pitch, or both at the same time, for
instance when the subject of a fuga is repeated later on and one fifth higher 22,

The same operation was much discussed in the second half of the XXth century, with interval vectors,
contents, and functions as described by Forte [14] or Lewin [20, 22] for instance.

17. This is very well validated by measurements, and vindicates the common aural experience of a bell’'s spectrum,
discrete but not harmonic. More or less similar results hold for Tibetan bowls.

18. Actually &, =~ (n+ %)7’[.

19. Significantly, £2/£7 is very close to a tempered fifth, which is quite perceptible in the actual sound of a tubular bell
and helps tune them together.

20. The only bounded solutions, that is to say the only ones physically possible in the temporal domain.

21. I leave aside here non-linear equations such as those modelizing drums, which also involve orthonormal families of
solutions, like Bessel functions : this is relevant in signl processing, but so far not in music theory.

22. Classically the repetition is not exactly one fifth above, the tonic being substituted for the fifth above the dominant.

8



For simplicity we focus on the case of the internal [Func, which is obtained by tallying every possible
interval inside a pc-set A C Z, 23 :

[Funca (k) = #{(a,b) e Ax A, b—a=k}.
That it measures some kind of internal periodicity is better seen from the equivalent definition
IFunca (k) = #(AN (A +k)).

For instance, an octatonic scale satisfies IFunco.t(3) = 8, meaning that it is the same when trans-
posed by a minor third; and a modulation to a dominant turns C major, or {0,2,4,5,7,9,11}, into
G major = {0,2,4,6,7,9,11}, with 6 notes in common. Hence IFunccym(7) = 6, which means that the
scale is actually a sequence of fifths and also that a modulation to the dominant will change only
one pitch class. Conversely, the notorious pc-set {0, 1,4, 6} shares exactly one pitch-class with any of
its transpositions (2 with the tritone transposition). This notion has grown in importance for both
analysis and composition, but seems to take us far away from the question of sines. It does not, as
we will see when examining [Func as a type of autocorrelation, that is to say measuring an object
against its diverse translates.

3.2 Some maths : convolution of distributions

The IFunc function (whether between two pc-sets or the same one) is actually an instance of a
convolution product. It is averred that David Lewin was aware of this already in his seminal paper
[21]. The general definition of convolution between two vectors, or lists, or distributions, is

(S * t)k = Z Sxt—x

XEZm

where indexes are considered modulo n for commodity.
When s, t are characteristic functions of pc-sets (or periodic rhythms), meaning that

1 henk € A
sk =1a(k) = {0 ‘;V en ke and t = 13, one easily checks that
else

(s = (Tax1p)(k) = > La(x) x Lp(k —x)

XEZn

has 1’s instead of O’s in the sum whenever x € A and k —x € B, i.e. x € k — B (the retrogradation of B
transposed by k) : this quantity tallies the elements of —B + kN A. In other words 24,

[Func(A,B) =1_A * 1p.

Notice that the complexity of this computation is quadratic : one has to effect n times n comparisons.
This operation * is of course fundamental in signal processing and its properties are well known 2°.
As seen in the last paragraph under the guise of correlation, it has psychoacoustical value for com-
parison purposes, checking how well a copy of A translated in space corresponds with B, enabling
to notice repetitions, recaps, periodicities and subtler phenomenons. Many, if not most, musical
operations in the brain can be expressed mathematically as convolutions.

The most important link for our present topic is the following simplification theorem.

. (Discrete) Fourier transform turns convolution product into termwise product, i.e. for any two
distributions s, t, in any index k, one has

—

s * t = S X 1.

The elementary proof can be found in any textbook on the subject. Notice that the left-hand term

23. Or up to a constant the probability of occurrence of an interval when notes of A are played uniformly randomly.
24. IFunc(A, B) tallies intervals from A to B.
25. It is a ‘good’ multiplication : Associative, commutative, with a neutral element 6 = (1,0,...0).
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involves convolution whose computational complexity is nZ, whereas the termwise product of s and t
is done in linear time (n multiplications), which cannot be bested for n-dimensional objects.
From Thm. 1 we get immediately

o~ — o~

IFunc(A) = 1x+L A= In x 1 A= 1a 1. = ‘ﬁ‘z

This is capital, showing that the magnitude of the Fourier coefficients is equivalent to the intervallic
information 26.

Another important formal information is that DFT itself — termwise product with a collection of
exponentials — can be interpreted as correlation with a geometrical sequence of exponentials. This
illuminates the characterization of ME sets by Quinn, which told us that (for instance) 4-notes pc-
sets have maximal 4th coefficient when maximally correlated with an arithmetic sequence with ratio
3, i.e. a diminished seventh. On these tricky interpretations, see [7].

We can now turn back to (co)sines.

3.3 A last, improbable cosine

Bill Sethares once communicated to the author the following empirical observation (!) :

Iterating and normalizing autocorrelation on any signal converges (quickly) to a cosine 27,

This looks mysterious or even unbelievable at first glance, but experimentation indeed shows a sine
wave with maximum value in O, i.e. a cosine?®, after 5 or 6 iterations as can be seen on Figure 4
[online an animated gif can be provided]. Indeed this is easily explained and even proved (except
on a nil measure set) by Thm. 1 and its corollary : we get [s*" for the Fourier transform of the
autocorrelation of a distribution s taken n times.

FIGURE 4 - Iterating autocorrelation and normalization always produces a cosine.

Assuming one of the Fourier coefficients is larger than the others, its 2"th power will be infinitely
larger than all others. Dividing by this largest value (normalizing), there remains a 1 at its position
and vanishing values elsewhere??. By inverse Fourier transform one gets back a cosine, with the
quick convergence explained by the exponential power 2". This portends a stupendous interpretation,
that the wired-in comparison (correlation) operation in the brain spontaneously produces cosine
waves !

A more theoretical occurrence of sines and cosines is rooted both in the most abstract, theoretical
physics, and the most practical experience (free jazz improvisation).

3.4 Mazzola’s imaginary time vs. predictive power

Guerino Mazzola [24] has advocated the introduction of a second dimension to time, an imaginary
axis purported to help parametrize the memorial dimension, “for a precise description of musical
artistic presence”, and notably the ongoing conscience during improvisation of the themes that have
been developed by other players.

26. This value is therefore the core notion for the study of homometry, or Z-relation as the American school once called
it. See [1, 14] for historical and modern references, like the definition of the equivalent Patterson function.

27. After inquiry it seems that this was already noticed around the 50’s by some engineers. It may have been known
earlier still.

28. A fixed point of the operation, of course.

29. Actually, there is another 1 at the symmetrical position because the distribution is real-valued. This is but a technical
detail.
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Although his initial motivation had to do with the ‘natural’(!) extension of the real world to com-
plex vector spaces as is done in quantum mechanics, this is clearly a form of real-time correlation,
doubling the complexity of perception/production of the musical flux. A second axis introduces a
change of phase, enabling correlation across time, the coupling of sine and cosine; or, equivalently
introducing the basis of complex exponentials used in Fourier transform.

Quite independently, this imaginary dimension has been shown to endow musical meaning when
one considers some specific products of Fourier coefficients, wherein the signum of the imaginary
part allows for example to distinguish between major and minor 39, or diatonic and pentatonic (recall
these last two have the same magnitudes for Fourier coefficients) or the different classes of pc-sets
homometric to {0, 1,4, 6}, as recently explored in [18].

Although all the above argumentation is mathematically convincing, many among the given examples
may well seem marginal. It is time to develop the most general reason why sines are legitimate in
mathematical music theory.

3.5 The key theorem

Considering the musical (or even aesthetic, generally speaking) importance of the transformation
theorem of convolution into termwise product, we will argue that the initial question can be largely
rephrased as :

Are there any other transformations [than DFT] turning convolution into ordinary, term-
wise product ?

This means achieving maximal reduction in computational complexity, surely a competitive (perhaps
even evolutionary ?) advantage for a brain feature. The surprisingly simple answer is, essentially :
no, there is no other one :

. Let E = C" be the complex vector space of distributions endowed with convolution product *. Let ®
be some linear isomorphism of E such that x is turned into termwise product x :

Vs,teE D(sxt) =D(s) x D(t).

Then O is the DFT up to some permutations of coefficients : there exists a bijection o of the
indexes set such that

For a detailed proof see [2, Thm. 1.11]. The gist of it is that by composing ® with inverse Fourier
transform, one creates a “licorn”, a mathematical object with so many wondrous features that it col-
lapses under its own constrains : it is an automorphism of E which preserves all operations, linearity
and termwise product. Reasoning on members of the canonical basis, (1,0,0...),(0,1,0,0...) etc.,
which are essentially the fixed points of s — s x s, is it fairly easy to prove that the image of a basis
vector is another basis vector, hence they are permutated. Notice that once again the notion of fixed
point is instrumental in the proof.

Conclusion

As shown by the present (partial) survey, the range of Fourier transform in analyzing musical phe-
nomena is bewildering. Although the amount of evidence carries some conviction in itself, it is not
enough to prove that alternative bases of decomposition could not do better. However, DFT excels in
two domains :
— Meaningfulness. The magnitudes of individual Fourier coefficients have direct musical signi-
ficance (for instance their collection carries essentially all that information that is invariant
under transposition or inversion) and mirrors perceptual information.

30. When considering the phase of $,8387.
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— Simplicity. This feature is provably optimal in the sense of Thm. 2, for whatever manipulation
of musical data reducible to a convolution operation, including all comparisons diagnosing
repetitions, periodicities, similarities, predictability and other cognitive processes known to be
involved in musical perception (and creation). On the other hand, modelization or problem
solving is easier with economical tools, and sines (or complex exponential functions) are also
minimal in this respect, being fixed points of differential operators and asymptotical limits of
many natural processes, leading to incontrovertible usefulness in solving ordinary or partial
differential equations and discrete difference equations. Indeed the basis of complex exponen-
tials appears in renormalizing geometric sequences, generated by the second simplest opera-
tion, multiplication (whether involving numbers or more complex objects, such as matrices).

The musical mind prefers Fourier transform because it optimizes the computation of correlations,
which is the essence of making sense of our perceptions; while the mathematical mind interprets
the world in sums of sines because of their “unreasonable efficiency”, as fixed points of elementary
operations — another form of comparison. So perhaps these two minds are one and the same.
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