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David Lewin originated an impressive number of new ideas in musical formalized analysis. This paper formally proves and expands one
of the numerous innovative ideas issued by Ian Quinn in his dissertation [17], to the import that Lewin might have invented the much
later notion of Maximally Even Sets with but a small extension of his very first published idea, where he made use of Discrete Fourier
Transform (DFT) for investigating the intervallic differences between two pc-sets. Many aspects of Maximally Even Sets (ME sets) and,
more generally, of generated scales, appear obvious from this original starting point, which would deserve in our opinion to become
standard. In order to vindicate this opinion, we develop a complete classification of ME sets starting from this new definition. As a
pleasant by-product we mention a neat proof of the hexachord theorem, which might have been the motivation for Lewin’s use of DFT
in pc-sets in the first place. The nice inclusion property between a ME set and its complement (up to translation) is also developed, as
it occurs in actual music.
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Notations : the cyclic group of order c is Zc. It models a chromatic universe with c pitch classes, and it
is as usual pictured as a regular polygon on the unit circle. In most actual examples c will be equal to 12.
x | y means the integer x divides y.
For the sake of readability we generally use the same notation for integers and their residue classes, the
context usually making clear whether a computation occurs in Z or in Zc.
The greatest common divisor of x, y is denoted by gcd(x, y).
We will use indiscriminately ‘Fourier transform’, ‘Discrete Fourier Transform’, or ‘DFT’.
The bracket notation is for the floor function.
The symbol X ⊕ Y means ‘all possible sums of an element of X and an element of Y ’, each result being
obtained in a unique way.

1 Fourier Transform of pc-sets

Part of our claim that Fourier Transforms provide the best way to define Maximally Even Sets relies on the
high musical significance of the DFT of pc-sets in general. This was salient in [17] for the special pc-sets
that Quinn collected as ‘prototypes’, among which the ME sets; and it was confirmed since by many other
cases. We thus feel it important to spend some time on the general DFT of pc-sets before turning to the
main topic, that is its application to ME sets proper.

1.1 History

In a short paper ( [13]), D. Lewin investigated intervallic relationships between two ‘note collections’ and
proved that, except in several listed exceptional cases, the interval function between the ‘note collections’
enables to reconstruct one from the other. He cursorily motivates the five exceptional cases by a final note,
wherein he puts forward that

(1) the interval function is a convolution product (of characteristic functions),
(2) the Fourier transform of such a product is the ordinary product of Fourier transforms.
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This shows that (when the Fourier transform of the characteristic function of A is non zero) knowledge of
A and of the interval function yields complete knowledge of the characteristic function of B.

In current modern notations, defining the interval function between A,B ⊂ Zc as

IFunc(A,B)(t) = Card{(a, b) ∈ A×B, a− b = t},

the characteristic fuction of X as 1X(t) =

{
1 if t ∈ X

0 if t /∈ X
, IFunc appears immediately as the convolution

product of the characteristic functions of A and −B:

1A ? 1−B : t 7→
∑
k∈Zc

1A(k)1−B(t− k) =
∑
k∈Zc

1A(k)1B(k − t) = IFunc(A,B)(t)

as 1A(k)1B(k− t) is nil except when k ∈ A and k− t ∈ B. Hence from the general formula for the Fourier
transform of a convolution product,

F(IFunc(A,B)) = F(1A)×F(1−B)

where F(f) stands for the discrete Fourier transform of a map f .
We will not quote the formula given by Lewin himself, as it is hardly understandable: his notations are

undefined and the computations extremely cursory. Of course this is not for lack of rigor: as the following
quotation suggests, Lewin did not really hope to be understood when talking mathematics.

The mathematical reasoning by which I arrived at this result is not communicable to a reader who does not
have considerable mathematical training. For those who have such a training, I append a sketch of the proof :
consider the group algebra [. . . ] [13]

Reading Lewin’s paper gives one a strong feeling that he wrote as little as possible on the mathematical
tools that underlay his results. Indeed, what little he mentioned did rouse some readers to righteous ire in
the following issues of JMT.

Nowadays such a ‘considerable mathematical training’ will be considered basic by many readers of this
journal; for instance D.T. Vuza made use of the equation above in the 80’s in the course of his monumental
research about rhythmic canons (see [21]), wherein he stressed the importance of Lewin’s use of DFT of
characteristic functions.

And as we will endeavour to prove, this approach enables to define ME sets (in equal temperament) in
a way perhaps more suggestive and even intuitive, than historical/usual definitions.

1.2 A quick summary of Fourier transforms of subsets of Zc

1.2.1 First moves.

Definition 1.1 Following Lewin, we will define the Fourier transform (or DFT in short) of a pc-set
A ∈ Zc as the Fourier transform of its characteristic function 1A:

FA = F(1A) : t 7→
∑
k∈A

e−2iπkt/c

The values FA(t), t ∈ Zc, are the Fourier coefficients.

1A is a map from Zc to C, whose DFT is well defined for t mod c, as FA(t+c) = FA(t)1 unless otherwise
indicated.

1When the choice of a representative in a residue class is relevant, we will specify it; otherwise the presence of an integer in a
computation in Zc will mean any of its representatives.
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The DFT of a single note a is a single exponential function t 7→ e−2iπat/c, the DFT of the whole chromatic
scale is

FZc
(t) =

c−1∑
k=0

e−2iπkt/c = 0 for all t ∈ Zc except t = 0.

But FA + FZc\A = FZc
, hence

Lemma 1.2 The Fourier transforms of a pc-set A and of its complement Zc \ A have opposite values,
except when t = 0:

∀t ∈ Zc, t 6= 0, FZc\A(t) = −FA(t)

Furthermore, we get FZc\A(0) = FA(0) if and only if Card A = c/2, as

Lemma 1.3 The Fourier transform of A in 0 is equal to the cardinality of A: FA(0) = Card A.

The DFT FA characterizes the pc-set A, by the following identity (Inverse Fourier transform)

1A(t) =
1
c

∑
k∈Zc

e+2ik tπ/cFA(k)

easily derived from the definition of FA. Thus the DFT yields the same information as the pc-set, but in
a form that stresses musically relevant concepts. More precisely, there is preservation of the absolute value
of DFT under all usual1 musical transformations. For instance,

Theorem 1.4 The length |FA| of the Fourier transform is invariant by (musical) transposition or inver-
sion of the pc-set A. More precisely, for any p, t ∈ Zc

• FA+p(t) = e−2ipπt/cFA(t) (invariance under transposition)
• F−A(t) = FA(t) (invariance under inversion)

Thus |FA| is an invariant under the T/I group of musical transformations, and also under complemen-
tation (except in 0 when Card A 6= c/2). As we will see momentarily, it is not a characteristic invariant
(meaning |FB| may be equal to |FA| though A and B are not T/I related) because of the famous Z-relation.
All the same, it appears to be a very good snapshot of the relevant musical information of a given pc-
set: by dropping the information of the phase of the Fourier coefficients and retaining only the absolute
value, we seem to keep the best part, in a way reminiscent of the Helmoltzian approach of sound, which
showed that the phase of a sine wave can (in many cases) be neglected, as the frequency is the part that
generates the perception of pitch. This strongly vindicates and to some measure extends Quinn’s ( [17])
notion of ‘chord quality’, which appears in the last section of his dissertation with a value that is precisely
|FA(d)|, d = Card A, and is measured, quite appropriately, in ‘lewins’.

As as nice application of these invariance properties, we may characterize periodic subsets:

Proposition 1.5 A ⊂ Zc is periodic , meaning A + τ = A for some τ , if and only if FA(t) = 0 except
when t belongs to some subgroup of Zc.

Proof From Thm. 1.4 we have

∀t ∈ Zc FA(t) = e−2iπτ t/cFA(t) ⇐⇒ ∀t ∈ Zc (1− e−2iπτ t/c)FA(t) = 0

1Less usual transformations, like t 7→ 7t mod 12, permute the Fourier coefficients. This is the meaning of the relationship between
chromatic clusters and ME sets with gcd(c, d) = 1 that will come to light later.
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Unless e−2iπτ t/c = 1, this compels FA(t) to be 0. Now the condition e−2iπτ t/c = 1 is equivalent to c | τt,
i.e. t multiple of m = c/ gcd(c, τ) – this makes sense for any representative of the residue classes τ and t.
This is compatible with reduction modulo c, and means t ∈ m Zc ⊂ Zc.

Conversely, if FA is nil except on a subgroup, say mZc with 0 < m | c in Z (we recall all subgroups of
Zc are cyclic) then, by inverse Fourier Transform

∀k ∈ Zc 1A(k) =
1
c

∑
t∈Zc

FA(t)e2iπ k t/c =
1
c

∑
t′∈mZc

FA(t′)e2iπ k t′/c =
1
c

∑
t′′=1... c

m

FA(m t′′)e2iπ k t′′ m/c

and this is obviously periodic with (the residue class of )
c

m
as a period, as each term in the sum is

c

m
periodic. �

Remark 1

• Some may well claim this proposition is obvious: a subset A ∈ Zc is the set of residues of a periodic
set Â ⊂ Z, with period c. This periodicity means precisely that 1A (or 1 bA, with the same formula) can
be expressed as a combination of c exponential functions, the t 7→ e2iπ k t/c: this is the inverse Fourier
transform formula and the very reason Fourier transform works. The existence of a smaller period m | c
means that m exponentials functions only are sufficient, e.g the t 7→ e2iπ k t/m. To give an example in a
more mundane context, the function | sinx| has a Fourier Series expansion of the form

∑
a2n cos(2n x),

because the map is π−periodic, not only 2π-periodic.
• It is noteworthy that the multiples of τ ∈ Zc appear as a subgroup m Zc of Zc, where the non-negative

integer m is usually smaller than τ (taking τ in [0, c[): m = gcd(c, τ) as we will recall in lemma 3.8 later.
• Let us define a regular polygon in Zc as any translate of a cyclic subgroup m Zc, i.e. a set a + m Zc.

These are the orbits of the translations t 7→ t+m (identifying m with its residue class), and any periodic
subset A ⊂ Zc must hence be a reunion of such regular polygons.

• All of this is only interesting when 1 < m < c.
• In Z12, the octatonic scale (0 1 3 4 6 7 9 10) is an interesting example of such a periodic subset. Its

group of periods is 3 Z12. Periodic subsets of Z12 are well known as Messiaen’s Modes à Transposition
Limitées.

1.2.2 DFT and intervallic content. A word of warning is necessary here: in order to stay into the
space wherein we are taking the Fourier transforms, we must consider oriented intervals and not the more
customary notion of interval contents. Using standard notations, we consider

Definition 1.6 The interval content of a subset A ∈ Zc is

ICA(k) = IFunc(A,A)(k) = Card{(i, j) ∈ A2, i− j = k}

Theorem 1.7 (Lewin’s Lemma)
The DFT of the intervallic content is equal to the square of the length of the DFT of the set:

F(ICA) = |FA|2

Proof Let A be a pc-set; as Lewin observed (for the more general interval function between two subsets),
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the ‘intervallic function’ from pc-set A to itself is 1 the convolution product

ICA = 1A ? 1−A

But as we recalled earlier, the Fourier transform of a convolution product is the ordinary product of Fourier
transforms, i.e. (using last part of theorem 1.4)

F(ICA) = FA ×F−A = FA ×FA = |FA|2

�

Note that the Fourier transform of any IC is a real positive valued function, an uncommon occurence
among DFT of integer-valued functions 1. Perhaps this would be a good way to look at the vexing question
of the Z-relation, which can now be reformulated in DFT term:

Definition 1.8 A,B ⊂ Zc are Z-related if and only if they share the same interval content; or equivalently
if the absolute values of their DFT are equal: AZ B ⇐⇒ |FA| = |FB|.

The equivalence stands because |FA| holds all the information about ICA by inverse Fourier transform.
Please note that we endeavour here to define a true equivalence relation, contrarily to the Fortean tradition
which excludes the ‘easy case’, when A,B are T/I related 2 – this case follows directly here from theorem
1.4.

From there we also get a very short proof of the hexachord theorem, considered by some the first
mathematically interesting result in music theory.

At the time he issued his first paper, Lewin had come to work with Milton Babbitt, who was trying to
prove the hexachord theorem:

Theorem 1.9 If two hexachords (i.e. 6 notes subsets of Z12) are complementary pc-sets in Z12, then they
have the same intervallic content (same numbers of same intervals).

Figure 1. These two hexachords share intervallic content

On the figure 1 with two complementary hexachords, the fifths have been signaled with arrows. Each
hexachord has the same number of fifths, three in this example.

1This relation has been quoted, in musical context, by several authors: for [21], it is the most important single contribution by David
Lewin; it also appears for instance in the recent [16].

1The DFT of a real valued function is non real in general, it only verifies F(f)(−t) = F(f)(t).
2The traditional position is not tenable; another argument against it is that some classes of ‘Z-related’ chords are indeed exchanged

through action of a larger group than T/I, like the two famous all-intervals (0 1 4 6) and (0 1 3 6) in Z12, which are affine-related – and
this is a general situation, as any affine transform of an all-interval set will be Z-related. Jon Wild pointed out to us that the reverse is
false.
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A simple derivation of this theorem in Zc for any even c ensues from the simple properties of DFT listed
already:

Proof If A ∈ Zc has c/2 elements, then as mentioned above, FZc\A = −FA. So

F(ICA) = |FA|2 = |FZc\A|
2 = F(ICZc\A) Hence (by inverse DFT) ICA = ICZc\A.

�

In our opinion it is very difficult to believe that Lewin should not have been aware of this elegant proof
(as far as we know, first published in [?]). We suggest that he did not produce it in 1959/60 because
the maths looked too involved at the time, and did not publish it later for reasons of his own (it could
be because other, more elementary proofs had appeared in the meantime). It is left to the reader, as a
good, healthy and entertaining exercise, to prove in the same way the Generalized Hexachord Theorem,
as presented in [18], [20], [16] among many others.

2 ME sets

2.1 Some definitions

2.1.1 Informal approach of ME sets. :
Maximally Even Sets, or ME sets in short, were defined in [8], generalized in [7] and later extended to

Well Formed Scales, which exist also in non equal temperaments (see [6]). The name refers to the intuitive
feature of being ‘as evenly distributed in the chromatic circle as possible’. As we will see, it is not so
easy to make this idea rigorous: many different though equivalent definitions exist, and our main objective
in this paper is to ground firmly the notion of ME sets on a DFT-based definition. We include a short
paragraph for readers who might still be unfamiliar with the notion, followed by a discussion of several
existing definitions. A very thorough paper on state-of-the-art applications of ME sets is [10].

Originally, Clough, Myerson and soon after Douthett observed this yet informal notion of ‘maximal
evenness’ in a collection of famous scales: whole tone scale, major scale, pentatonic, octatonic. . . For mu-
sicological reasons, and perhaps also because of mathematical difficulties we will mention below, their
definition was rather indirect.

In the minor scale there are three different values of intervals between consecutive notes. Not so for the
major scale, or the melodic (ascending) minor; but the latter features three different fifths.

From these examples, and others, ME sets were defined in regard with the different (some say ‘diatonic’)
possible values of intervals inside the scale: for instance, the major scale and the pentatonic alike have
only two different interval sizes between consecutive notes – tones and semi-tones for the one, tones and
minor thirds for the other. Also notice that the two semi-tones in the major scale, for instance, are as far
from one another as possible. This has some relevance to the organisation of black and white keys on a
keyboard, and hence to traditional musical notation in staves.

The common original definition (here reworded) states that

Definition 2.1 Let A be a subset of Zc. Let us for convenience’s sake call a ‘second’ any interval between
two adjacent elements of A, a ‘third’ an interval between every odd note, and so on.

Then A is maximally even if, and only if, there are at most two different kinds of ‘seconds’, ‘thirds’,
‘fourths’ aso.

This definition suffers from the common blemish of many formalized musicological definitions, that take
for granted many notions with intuitive, musical support (like diatonic intervals, adjacency of notes, etc.)
which are not so obvious to define mathematically1.

1To be fair, pre-Hilbert mathematics (and some post-Hilbert, too) often relied too heavily on intuitions of the physical world, as the
quarrel on non-euclidean geometries made clear.
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To state it with numbers: if an ordered scale2 is A = {a1, a2 . . . ad} with indexes taken modulo d and
values taken modulo c, for each value of k there should be at most two different values of ai+k − ai when
i varies.

This was named the ‘Myhill property’ in [8]1) and it is not at all straightforward.
Worse still, in our opinion, this definition necessitates an ordering, or reordering, of the notes : (C E D

G A) is not a ME set, though (C D E G A) is ! This verges on the unsatisfactory, if one is interested in
pc-sets and not (ordered) scales.

Many geometrical criteria have been given, and proved equivalent (see [10]); we especially like the ‘black
and white’ definition in [7], very intuitive though hardly practical (see figure 2): plot two regular polygons,
one white with d vertexes and one black with c − d vertexes. Then rearrange all the vertexes, preserving
order, with identical distance between consecutive points. Both black and white subsets are ME sets.

mixing two regular polygons the same rearranged

Figure 2. Respacing the points of two intertwined regular polygons

The most effective way to actually compute ME sets is as follows: taking c as the cardinality of the
ambient chromatic space, d the number of notes of the looked-for set, and α some arbitrary number, the
J functions

Jα
c,d : k 7→

⌊kc + α

d

⌋
, k = 0 . . . d− 1

already introduced in [8], give all ME sets with cardinality d by their sets of values

Jα
c,d(0), Jα

c,d(1), . . . Jα
c,d(d− 1)

(taken modulo c): for instance with c = 12, d = 5, α = 12 one gets the pentatonic (0 2 4 7 9); but relevance
to the intuitive idea of maximum evenness, or even to sizes of intervals, is less than obvious.

The most natural definition might be to try and maximize the mutual distances between all the notes,
eg

∑
a,a′∈A δ(a, a′), but the result depends on the chosen distance function δ, and is not satisfactory for

the (arguably) most natural one, the interval metric :

δ(u, v) = min
k∈Z

|u− v + kc|

2We skip a formal definition of ‘ordered’ in Zc, which will be useless in our approach.
1Note that in general, it is not enough that Myhill property holds for adjacent notes, e.g. having only two kinds of ‘seconds’ does not

ensure we have a ME set, as shown by the example of the melodic minor scale.
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as several unexpected2 extraneous solutions crop up, as in figure 3 . A ‘good’ definition would be expected
to give one characteristic shape for a given pair (c, d), not so many. This exemplifies why there is no
universal, or obvious, definition for the näıve concept of ‘Evenness’.

Figure 3. Some sets maximizing the sums of distances for the interval metric – c = 15, d = 6

As none of these definitions (or others) appears completely satisfactory in our opinion, we will now
venture to propose another one.

2.2 An illuminating remark by Ian Quinn

Discussing a general typology of chords (or pc-sets), Ian Quinn noticed ( [17], 3.2.1) that what he calls
‘generic prototypes’ are the ME sets, and that they share an extremal property in terms of Fourier ‘weight’1.
This is what we will now adopt as a definition; Quinn’s impressive survey and classification of the landscape
of all chords was not focused exclusively on ME sets, and as his writing voluntarily avoided, to quote him,
the ‘stultifying’ quality inherent to dry mathematical generalizations, he left room for a formal proof that
this definition is equivalent to the traditional ones (we will prove the following definition is equivalent to
the classicical description, up to and including the formula with J functions; see [7] and [10] for equivalence
between all other definitions).

Moreover, and this is in itself justification enough for what follows, many properties of ME sets will now
appear obvious from this starting point. Finally, the only quantity involved is |FA|, the ‘chord quality’ or
‘weight’ which is, as we have seen, in many ways the most natural musical invariant for pc-sets.

3 A Lewinesque definition of ME sets

3.1 Definition and properties

Definition 3.1 The pc-set A ⊂ Zc, with cardinality d, is a ME set, if the number |FA(d)| is maximal
among all pc-sets with cardinality d:

∀A′ ⊂ Zc, CardA′ = d ⇒ |FA(d)| ≥ |FA′(d)|

As the number of pc-sets is finite, a solution must exist. Note that this is closely related to the interval
vector of A, as we have seen above:

√
F(ICA)(d) = |FA(d)|. This is a good sign, as it relates the DFT to

the mutual intervals in the chord.

2But all strictly convex distance functions on the unit circle will give maximums on the same pc-sets, which are the ME sets, as
shown in [12]. Nonetheless, such a distance (like the chordal distance, length of the line segment between two points of the circle) has
little musical meaning.

1“ We note that generic prototypicality may be interpreted as maximal imbalance on the associated Fourier balance – at least to the
extent that a generic prototype tips its associated Fourier balance more than any other chord of the same cardinality possibly can”.



alternative title 9

From the invariance of quantity |FA| under musical operations (see theorem 1.4) follows without further
ado

Theorem 3.2 Transposition, inversion of a ME set still yields a ME set.

Almost as straightforward, from computation of the DFT of the complement (lemma 1.2) we get

Theorem 3.3 The complement of a ME set is a ME set.

Proof For any subset A

|FZc\A(c− d)| = |FZc\A(−d)| = | − FA(d)| = |FA(d)|

So the one is maximal whenever the other is, e.g. A is a ME set iff Zc \A is. �

Also notice that this definition addresses the unordered pc-set.

3.2 The regular polygon case

It is certainly desirable that in the case when d | c, the solutions of the above maximization problem be
the regular d−polygons. Such is the case :

Lemma 3.4 For any pc-set A with d elements, any t ∈ Zc, |FA(t)| ≤ d.1

Hence any regular d−polygon A = {0, c/d, 2c/d . . . } or any translate, which verifies

|FA(d)| =

∣∣∣∣∣
d−1∑
k=0

e−2iπ d kc/d

∣∣∣∣∣ = |
d−1∑
k=0

1| = d

is indeed a ME set. When d | c, the reciprocal is easy:

Theorem 3.5 If |FA(d)| = d = Card A, then A is a regular polygon.

This will be indeed a special case of the general computation, but it helps to understand what is going
on. This theorem is clearly stated in [17] under a different form.

Proof By Minkowski’s inequality, the sum |
∑

k∈A e−2iπk d/c| is less than
∑

k∈A |e−2iπk d/c| =
∑

1 = d,
with equality if and only if all the exponentials share the same direction, i.e. all −2πk d/c are equal
modulo 2π; this occurs only when the k′d/c−kd/c is an integer for all k, k′ ∈ A, that is to say the k′ − k
are multiples of c/d, which proves that A is a subset of a regular d−gon (mutual angles being multiples of
2π(c/d)/c = 2π/d). As A contains d different points, it is the whole d−gon. �

All the exponentials in the formula for FA(d) =
∑

e−2iπkd/c are superimposed, pulling in exactly the
same direction, like a Tug of War: see figure 4.

This exemplifies that the above definition aims at looking for the best approximation to a regular polygon
— obviously it will be only an approximation when d does not divide c, for instance there is no regular
heptagon inside the 12 notes universe. Indeed the solution (the major scale A =(0 2 4 5 7 9 11) or any
translate thereof) achieves |FA(7)| = 2 +

√
3 ≈ 3.73, still far from the unattainable value 7, but still the

largest value possible.

3.3 The chromatic clusters and their DFT’s

As a useful stepping stone, we will characterize chromatic clusters, that is to say bunches of consecutive
notes.

1Furthermore it can be proved that |FA(d)| ≤ inf(d, c − d).
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 x 4 

Figure 4. All exponentials superimposed

Theorem 3.6 (Huddling lemma)
A is a chromatic cluster, i.e. A ∈ Zc is some translate of {1, 2 . . . d} if, and only if, |FA(1)| has maximal

value among all d−subsets of Zc.

Incidentally there is a formula for this maximal value, namely

µ(c, d) =
sin((2d + 1)π/c)

2 sin(π/c)
− 1

2
.

This gets close to d when c is much larger than d.

Proof Unless it is nil (and hence not a maximum), the sum

FA(1) =
∑
k∈A

e−2iπk/c

of d unit vectors has some direction ~u i.e. eθ0 . Informally, though the e−2iπk/c cannot be superimposed as
in figure 4, we want them to ‘huddle’ as near as possible to direction theta0.

Consider for each k ∈ A the angle θk = 2πk/c − θ0, then the projection of FA(1) along direction ~u,
which is equal to |FA(1)| itself, has length

∑
k∈A cos θk. As the function cos increases from −π to 0 and

decreases from 0 to π, this quantity is maximum when all θk’s are as close to 0 as possible. Suppose there
is a gap, that is to say some consecutive pair (j, k) of points in A with θj − θk > 2π/c, meaning j − k ≥ 2,
and no element of A in between. Let us say for instance that θ0 ≤ θk < θj . Now replacing j by j − 1 in A
replaces θj by θj − 2π/c which is closer to 0 and hence has a greater cosine. So

∑
k∈A cos θk was increased,

and even though the direction of FA(1) will have changed in the process, the new A will have a greater
value for |FA(1)| (which is longer than its projection in any direction). Hence the original |FA(1)| was not
maximal because of the presence of gaps. We have thus proved that in order to have a maximal |FA(1)|, it
is necessary to have all elements of A consecutive. Conversely, all such sets are translates of one another
and hence give the same value for |FA(1)|. �

Remark 1 This means in effect that in order to increase the sum, one moves the points ‘inwards’ until
the set A is ‘without holes’. This iterative idea is fairly similar to the proof that the extreme potential
configurations in the Ising model are reached for ME sets in [12].

Later on, it will be useful to understand that lemma as compelling the farthest, extreme points of A to
move ‘inside’ as much as possible.
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o l d s u m n e w ,l a r g e r ,s u m
a k

a 1
a ' 1

a 1 + ∑ a k
a ' 1 + ∑ a k

Figure 5. Moving one point ‘inside’ increases the sum

3.4 These are the usual ME sets

We now move towards understanding the general case from this definition.
Recall we aim at getting the e−2iπ k d/c, k ∈ A, as close as possible, so that their sum gets maximum, as

mentioned in the textbook case of a regular polygon.

3.4.1 The simplest case: gcd(c, d) = 1.
In this paragraph, dealing with the original ME sets in the restricted sense of [8], we assume c and d

coprime (gcd(c, d) = 1): then x 7→ d x is bijective in Zc, as d has a multiplicative inverse f = d−1 mod c.
But |FA(d)| = |

∑
k∈A e−2iπ k d/c| = |FdA(1)|, and hence, |FA(d)| is maximum if and only if |FdA(1)| is;

as we have just seen, this means that dA ∈ Zc is a chromatic cluster:

∃a ∈ Zc, dA = a + {1, 2, . . . d}

Multiplying by f = d−1, we get that A is (up to translation) generated by f :

Theorem 3.7 ME sets with d elements, d coprime with c, are generated by f , the inverse in Zc of the
cardinality d:

A = f a + {f, 2f, 3f . . . d f} mod c

The typical example is the major scale, generated by a cycle of fifths e.g. seven semi-tones.

Remark 2 Notice that, as the inversion −A of a ME set A is also a ME set, it is also possible to use
generator f ′ = −d−1. For instance, the major scale is also generated by fourths.

Remark 3 Thm. 5 means that the points in d A must be as close as possible, which is also clearly stated
in [17] under a dual form1.

We have covered the original ME sets defined by [8], and the regular polygons. It remains to check the
third and last type of ME set, i.e. the case d 6= gcd(c, d) > 1.

1“ The best the chord can do is to have pcs gathered in adjacent pans, so that the arrows point in approximately the same direction”
[17].
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3.4.2 How it works when (c, d) > 1. In effect, we have already settled the subcase 1 < d | c: the
maximum value of |FA(d)| is d, and as proved above it is obtained for regular d−gons and only for them.
So we might now assume that d is not a divisor of c. From now on, let m = gcd(c, d) > 1, c′ = c/m and
d′ = d/m where m = (c, d): so c′ and d′ are coprime. The map x 7→ d x mod c is no longer one to one:

Lemma 3.8 The image of the group morphism ϕd : x 7→ d x from Zc into itself, is the subgroup m Zc. This
subgroup is isomorphic to Zc′. The kernel of ϕd is the subgroup c′ Zc, with m elements.

Proof The image of ϕd is a cyclic subgroup of Zc (generated by d. . . among others). Let x ∈ ker ϕd, i.e.
d x = 0 in Zc: this means exactly that c′ | x in Z, as c | d x ⇐⇒ c′ | d′ x, which implies c′ | x as (c′, d′) = 1.

This characterizes ϕd: its kernel c′ Zc has c/c′ = m elements and hence its image has c/m = c′ elements,
since Zc/ ker ϕd ≈ Im(ϕd). Or more directly, the kernel being c′ Zc, the image is isomorphic to Z/c′Z = Zc′ .
�

So any element of d Zc = m Zc has a fiber with m elements, meaning each point in the image Im(ϕd) =
m Zc is obtained exactly m times:

dy ≡ dx mod c ⇐⇒ y − x ∈ ker ϕd ⇐⇒ y = x + kc′, k = 0 . . .m− 1

Here is an example: have c = 12, d = 8. Then m = 4. The image of ϕd is the subgroup m Zc = {0, 4, 8}
with c′ = 3 = 12/4 elements, each of which has m = 4 preimages – the preimages of 4, say, are 1, 4, 7, and
11.

Let us now extend the idea of the ‘huddling lemma’ farther.

3.4.3 The multiset A′.

Lemma 3.9 For any pc-set in Zc, |FA(d)| = |
∑

k∈A e−2iπ(k d)/c| = |FA′(1)| where A′ = dA, with the
proviso that A′ is a multiset : each of its elements has a multiplicity (at most m, as seen above).

A multiset in Zc can be modeled as a list of multiplicities of elements of Zc, or equivalently as a map from
Zc to non negative integers. For a traditional set, the values of the map would be either 0 or 1, for a multiset
it can be any integer. The interval function mentioned above can also be seen as a multiset. Here we will
denote ma if point a has multiplicity m, and list the elements of A′ as the mk’s with m = Card(ϕ−1

d (k)∩A),
the number of preimages of k in A.

For instance in the extreme case of a regular polygon, d | c and A′ is a single point k repeated m = d
times: A′ = {dk}.

As a more general example, consider the octatonic scale A = {0, 1, 3, 4, 6, 7, 9, 10}: there A′ = 8A
mod 12 = {0, 8, 0, 8, 0, 8, 0, 8} = {40,4 8}.

Until the end of this section we assume that A is a ME set with d elements.
For clarity, let A′′ be the ordinary set with the same points as multiset A′, i.e. it is A′ but with multiplic-

ities are cut down to 1. Now in accordance with our definition, we want |FA(d)| = |
∑

a∈A′′ m(a)e−2iπa/c|
to be as big as possible. Remembering the ‘huddling lemma’, this means that the elements a of A′ are
as close together as possible. Notice that the ambiant universe is now d Zc = m zc, and no longer Zc. We
prove the following generalization of Thm. 5:

Proposition 3.10 Let M be the set of multisets in m Zc with d elements [counting their multiplicities],
with the additional constraint that any element of A′ ∈ M has multiplicity ≤ m. Then the maximal value
of S = |

∑
a∈A′′

m(a)e−2iπ a/c| where A′ ∈ M and A′′ is as above, is obtained when A′ is some translate of

{m1,m 2, . . . md′}.

Proof We assume that A′ does not have this form, and prove that S is not maximal with the same
arguments as in the proof of the huddling lemma, eg ‘filling in the holes’ increases the length of the sum.
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Let again the direction of the sum
∑

a∈A′′
m(a)e−2iπ a/c be θ, i.e. arg S = θ (if S = 0 then it is not maximal).

Still

|S| =
∑

a∈A′′

m(a) cos(2iπ a/c + θ0) =
∑

a∈A′′

m(a) cos(−θa) =
∑
a∈A′

cos(−θa) (with repetitions)

by projection on its own direction θ0. The angles θa = −2iπ a/c− θ0 lie between −π and π. Let amax ∈ A′

with θamax
closest to π, i.e. the point e−2iπ amax/c is farthest from the direction θ0 of the overall sum.

Symmetrically, let amin ∈ A′ with θamin
closest to −π. For clarity let us assume −c/2 < amin < 0 <

amax < c/2 (translating A′ if necessary). By our assumption that A′ is not made of d′ consecutive points
with maximal multiplicity m, amax − amin + 1 > d′ and there is some point ah between them with
multiplicity less than maximal:

amin < ah < amax m(ah) < m

(informally there are ‘holes’). At least one of amin, amax is farther from θ0 than ah. Say it is amin for
instance.

!0
 amax

 amin

 ah

!0 amax

 amin

!'0

!ah

Figure 6. Maximizing the sum on a multiset

Moving one point from position amin to position ah, i.e. decrementing m(amin) while incrementing m(ah),
will increase |S| as a cos θamin

is replaced by cos θah
which is greater. Now the direction of the new sum

S′ will have changed in the process, but its length, being greater that its projection on direction θ0, must
have increased.

We have proved that the sum S is not of maximal length when A′ is not a translate of d′ consecutive
points with multiplicity m. Hence this last distribution is maximal. �

As we have several (d′) points in multiset A′ = d A, each with multiplicity m, it means that set A is
periodic (with period c′), as the reunion of the sets of all m preimages of elements of A′′, which are periodic
subsets. We have proved

Proposition 3.11 A is periodic with period c′.

In the example of the octatonic scale, we had A′ = {40,4 8}, with preimages 0, 3, 6, 9 for 4 and 1, 4, 7,
11, for 8: A = {0, 1} ⊕ {0, 3, 6, 9} = B ⊕ 3 Z12.

Let us introduce for clarity B as the set with elements chosen between 0 and c′ − 1 and A = B ⊕ c′Zc,
that is to say we select for each multipoint in A′ the one and only preimage in A that is (the residue class
of an integer) between 0 and c′ − 1: this is possible as the morphism ϕd is bijective when restricted from
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{0, 1, . . . c′ − 1} to m Zc. Elements of B are actually computed by the canonical morphism from Zc to Zc′ ,
i.e. x 7→ x mod c′.

Theorem 3.12 A is a ME set in Zc if and only if B is a ME set in Zc′.

This is the well-known hereditary characterization of type III ME sets in [7], and it rounds up the
classification of all ME sets.

Proof Actually, computing d′ × B in Zc′ is straightforward and would yield the theorem. But keeping in
line with the aim of this paper, we will make use again of the Fourier transform of B. From A = B ⊕ c′Zc

and the definition of Fourier transform, we get

FA(d) =
∑
k∈A

e−2iπdk/c =
∑

k′′∈B

m−1∑
`=0

e−2iπd(k′′+` c′)/c =
∑

k′′∈B

e−2iπd k′′/c
m−1∑
`=0

e−2iπ` = m×
∑

k′′∈B

e−2iπd′ k′′/c′

so this is (multiplied by the constant m) just the DFT of B ⊂ Zc′ , i.e. FB(d′): this number is of maximal
length if and only if B is a ME set in Zc′ (we have already proved this in paragraph 3.7, as c′ and d′ are
coprime). �

Remark 4 The computation obfuscates the essential obviousness of this result: we have seen that A must
be c′−periodic, so its DFT in essence has only c′ meaningful values, the others are nil. It follows from
Prop. 1.5 that FA(k) = 0 unless c′ | k. So checking out the useless values of k, one remains with the DFT
of a subset of Zc′ , none other than B. This is clearly visible on figure 7 with Fourier transforms of the
ME set (0 2 4) in Z7 and its counterpart (0 2 4)⊕ (0 7 14 21) in Z28. This argument seems to us more
illuminating than purely algebraic computations, as it enhances the fact that the “characteristic domain”
B concentrates its energy in the sense of the huddling lemma, in order for A to do the same.

4
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12

ME!7,3"

4 8 12 16 20 24

2

4

6

8

10

12

ME!28,12"

(0 2 4)

 0 

 2 

 4

Figure 7. Maximizing for B is maximizing for A
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We get as a corollary what we might have got by direct computation:

Theorem 3.13 A is a ME set of cardinality d in Zc if and only if the set d′×B = (d′×A mod c′) ∈ Zc′

is some translate of {1, 2, . . . d′} ⊂ Zc′.

We immediately get from there the complete enumeration of ME sets, which stands in all three cases
(it is clearly true already in the first two, which may also be regarded as special cases with respectively
m = 1 and m = d).

Corollary 3.14 The number of different ME sets of cardinality d in Zc is c′ = c/ gcd(c, d) (the number
of different possible B’s).

All are translates of one another (the group of translations acts transitively on ME sets)1.

For each couple (c, d) there is but one translation class of ME sets with d points in Zc. Henceforth we
will denote such a ME set class as 〈c, d〉. An actual ME set will be ‘a 〈c, d〉 ME set’. For example there
are exactly three different 〈12, 8〉 ME sets, i.e. the octatonic scales.

Remark 5 Each individual < c, d > ME set is invariant under the m translations of step c′ and multiples.
We have seen (1.4) that the inversion operation preserves the class of ME-sets: this means that the inverse

of a ME set is one of its translates. Indeed a ME set is its own image under exactly2 2 ×m operations,
m translations and m inversions in the dihedral group T/I of transformations of type x 7→ x + τ and
x 7→ `− x in Zc. For instance, inversions x 7→ −x, 3− x, 6− x, 9− x preserve the above octatonic.

3.4.4 Commutative diagramms.

Remark 6
[to reviewers] I am in doubt about this paragraph: it is not necessary in the flow of the actual paper,

but it might be useful for further research. So shall I keep it or not ?

This paragraph is ambling away from the general scope of the paper, since instead of making, hopefully,
the notion of ME sets more intuitive, geometric and musical, it introduces rather abstract algebra. We
include it nonetheless for at least two reasons:

• Nowadays most musicologists are getting familiar with digraphs, or will, and
• abstraction comes at a cost, but pays off when further developments and/or connections are needed.

Though we do not see at present, for instance, how Pairwise Well-Formed Scales could benefit from this
Fourier analysis of subsets, a strong formalized approach of the present work could help develop further
research on this subject.

As we have established above, a ME set A with d elements in Zc is c′- periodic. It is built up from its
projection : A mod c′ = B ⊂ Zc′ , hence A = B + c′ Zc (this makes sense as the set of preimages of B
by the the canonical projection from Zc onto Zc′) and as B ⊂ Zc′ is a ME set with d′ elements, d′ being
coprime with c′, B is (up to translation) an arithmetic sequence B = (b+)f ′ × {1, 2, . . . d′} (mod c′). So
we can express this compound of multiplications, reductions with different moduli, and isomorphisms (≈)
by a couple of commutative diagrams, the second being included in the first:

Zc
ϕd−−−−→ m Zc

mod c′
y ≈

yt7→t/m

Zc′
ϕd′−−−−→
≈

Zc′

A −−−−→
ϕd

A′ = d A

mod c′
y yt7→t/m

B
ϕd′−−−−→
≈

b + {1, 2, . . . d′}

1Only when m = 1 do we have simple transitivity, i.e. an interval group in the sense of [15].
2The stabilizer of any pc-set in T/I, isomorphic to dihedral group Dc, is either a cyclic or a dihedral group. For 〈c, d〉, it is always a

Dm.
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Hence in practice one generates B with a ‘cycle of fifths’ of d′ elements of Zc′ , where the generator f ′ is the
inverse (or its opposite, see remark 2) of d′ mod c′: B = {f ′, 2f ′, . . . d′f ′} mod c′; and A is retrieved by
adding multiples of c′: A = {f ′, 2f ′, . . . d′f ′}+ c′ Zc. This description of ME sets in the most complicated
case finally matches the historical one.

3.5 Expression by way of J functions

For the sake of completeness we add this technical but quick derivation of all ME sets1 as values of a J
function:

Theorem 3.15 Any ME set A may be obtained by way of a J function, i.e.

∃α ∈ Z, A = {
⌊kc + α

d

⌋
mod c, k = 0 . . . d− 1}

This vindicates finally our claim that the Fourier definition of ME sets allows to retrieve all the known
theory.

Proof We compute first in Z, to get the actual ME set it will only remain to reduce modulo c. We take α
equal to 0, other choices lead to translates of A (and may change the order of elements, see [7]).

We will define A as the sequence
⌊kc

d

⌋
for k = 0 . . . d− 1 and we will prove that A mod c is a 〈c, d〉 ME

set.
We notice first that this is a sequence of identical subsequences, up to translation:

⌊(k + d′)c
d

⌋
=

⌊kc

d
+

d′c

d

⌋
=

⌊kc

d

⌋
+ c′ where we put again m = gcd(c, d), c = c′ m, d = d′,m

Hence it is sufficient to study the subsequence of the first c′ terms, i.e.

B = {
⌊kc

d

⌋
, k = 0 . . . d′ − 1}

We claim that the fractional parts of the numbers
kc

d
=

kc′

d′
take different values when k runs from 0 to

d′ − 1. This is true because c′ and d′ are coprime:

k′c′

d′
− kc′

d′
= n ∈ Z ⇒ (k′ − k)c′ = d′n ⇒ d′ | (k′ − k) ⇒ k′ = k as |k′ − k| < d′

by Gauss’s theorem. Next notice that

0 ≤ kc′

d′
−

⌊kc′

d′
⌋

< 1 ⇒ 0 ≤ kc′ − d′
⌊kc′

d′
⌋
≤ d′ − 1

and integers kc′ − d′
⌊kc′

d′
⌋

will lie between 0 and d′ − 1 when k = 0 . . . d′ − 1.

But all these integers are distinct, as they are multiples of the fractional parts of the
kc′

d′
, which are

distinct as established previously.

So −d′B = {−d′
⌊kc′

d′
⌋
, k = 0 . . . d′ − 1}, when reduced modulo c′, yields all different integers from 0 to

d′ − 1. This means that B mod c′ is a 〈c′, d′〉 ME set, from Thm. 3.7.

1This is the algorithm given in [8] and extended to all cases in [7], but here we get the formula after the classification of all ME sets.
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As A is made of copies of B, namely A = B ⊕ c′Zc, this proves from Thm. 3.13 and the construction

discussed above, that A = {
⌊kc

d

⌋
, k = 0 . . . d− 1} is a 〈c, d〉 ME set. �

4 Generated scales

A nice added feature of this DFT characterization of ME sets is its extension – mutatis mutandis – to the
general generated scales, of which we have already seen the chromatic clusters.

Definition 4.1 A ∈ Zc is generated by f if (up to translation as usual) A = {f, 2f, 3f . . . d f}.

We get chromatic clusters, ME sets with f = d−1, or regular polygons with f = c/d, in the cases
respectively of f = 1, gcd(c, d) = 1 or c = f d. The general idea is that ones switches between generated
scales by way of affine maps; and this does not change the Fourier coefficients, but just permutes them.
We have used this when writing FA(d) = Fd A(1). Unfortunately, owing to the existence of divisors of zero
in Zc, we cannot then and there transpose all the results on ME sets to all generated scales, but some
interesting results emerge nonetheless:

Definition 4.2 Let ‖FA‖ be the maximal value of all Fourier coefficients:

‖FA‖ = max
t∈Zc,t6=0

|FA(t)|

and let ‖FA‖∗ be the maximal value of Fourier coefficients with invertible1 indexes:

‖FA‖∗ = max
t∈Z∗

c

|FA(t)|

We consider two different cases:

Theorem 4.3
Let µ(c, d) be the value of |FB(d)| for any 〈c, d〉 ME set B, that is to say µ(c, d) = |F1,2...d(1)|.
A pc-set A with d elements is generated by some f coprime with c, if and only if ‖FA‖∗ = µ(c, d).

Proof Direct sense: f−1A is by assumption a chromatic cluster, hence |FA| reaches µ(c, d) as

|FA(f−1)| = |Ff−1A(1)| = µ(c, d).

This is, as we have seen, the value of |FA(B)(d)| when B is any 〈c, d〉 ME set.
Conversely, let ‖FA‖∗ = |FA(t0)| = |Ft0 A(1)| and assume this is the maximal possible value µ(c, d) =

|F{1,2...d}(1)|. Hence |Ft0 A(1)| is maximal, and t0 A is a cluster (with d consecutive elements). As t0 is
coprime with c, hence invertible mod c, we get eventually

A = t−1
0 {1, 2 . . . d} up to translation, i.e. A is generated.

�

Please note that ‖FA‖∗ can never exceed µ(c, d). In other words,

Corollary 4.4 Maximal values of ‖FA‖∗ pertain to generated scales.

For instance, scale (0 2 4)= A ⊂ Z11 is certainly generated; this appears when considering the value
|FA(6)| = 2.7287 = µ(11, 3), maximal.

1The group Z∗c is made up of the classes of integers coprime with c.
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Unfortunately but interestingly, some generated scales (with generators non coprime with c) cannot be
characterized in that way, e.g. A = {0, 2, 4, 6, 8} ⊂ Z12: then ‖FA‖∗ = 1 < 2.73 = µ(12, 5). We can partially
reach these scales with the following result, looking for the absolutely maximal value possible:

Theorem 4.5 If a scale (or pc-set) A with d elements checks the condition ‖FA‖ = d, then A is part of
a regular polygon with c′ = c/ gcd(c, d) elements.

Proof We have by assumption |FA(t)| = d for some t 6= 0, but as seen in theorem 3.5, this means
that multiset d A is a single point with multiplicity d. So ϕd : x 7→ d x is not one to one, meaning
m = gcd(c, d) > 1, and that A is a subset of the preimages of a single element of m Zc. As seen when
studying ϕd, these preimages form a c′−polygon. �

For instance, the chunck of whole tone scale A = {0, 2, 4} ⊂ Z12 is certainly not Maximally Even,
but it is generated, and this appears when computing FA(6) = 3, clearly an unbeatable value (notice
|FA(3)| = 1 < 3).

1 2 3 4 5 6 7 8 9 1011

3
chunk of whole tone

1 2 3 4 5 6 7 8 9 10 11

3

another pc set with maximal DFT

Figure 8. DFT of (0 2 4) and (0 2 6) modulo 12 share maximal value in 6

Notice that, although this includes generated scales, other cases are possible: C = {0, 2, 6} also checks
FC(6) = 3. This includes the ‘secondary’ and many ternary ‘prototypes’1 in [17], 2.4, as it seems thazt
Quinn had noticed. This class of maximal pc-sets includes generated scales, but is somewhat wider.

5 Chopin’s theorem

1(0 2 6) mod 10 falls under the last theorem, but not (0 1 2 3 4 5 7 8 9).
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This section is just an extension of remark 2 above, that either f ′ = d′−1 or its opposite will generate a
〈c′, d′〉 ME set. This has a consequence on complementary ME sets classes: as gcd(c, c−d) = gcd(c, d) = m,

when one replaces d by c−d, one gets the same c′, and replaces d′ by
c− d

m
= c′−d′ ≡ −d′ mod c′; hence

Lemma 5.1 A same generator f ′ can be used for the construction of both 〈c, d〉 and 〈c, c− d〉 ME sets.

The interesting1 question of the set of all generators of a scale (not only for ME sets) is to be elucidated
in [2].

For instance, the fifth f ′ = f = 7 generates both the pentatonic and the major scales, when c = 12.
For, say, c = 20 and d = 8, one gets m = 4, d′ = 2, c′ = 5, f ′ = 3 and the generated ME sets with 8
and 12 elements are {0, 3} ⊕ {0, 5, 10, 15} and {0, 3, 6, 9} ⊕ {0, 5, 10, 15} = {0, 3, 1, 4} ⊕ {0, 5, 10, 15}. More
generally,

Theorem 5.2 Let 1 < d ≤ c/2; then any given 〈c, c − d〉 ME set contains several (exactly c′ − 2d′ + 1)
〈c, d〉 ME sets. In short, the complement of a ME set contains it (or the reverse) – up to transposition of
course.

Proof A 〈c, d〉 ME set is constructed by truncating to just d′ consecutive values the sequence
{f ′, 2f ′, . . . (c′ − d′)f ′} mod c′, which generates (adding up c′ Zc) the given 〈c, c − d〉 ME set A. This
can be done in precisely c′ − 2d′ + 1 ways.

From there, as seen above, it suffices to add c′ Zc to get both whole ME sets, since c′ is the same for d
and c− d, preserving the inclusion relation all the time. �

We would like to baptize this result Chopin’s theorem in reference to the Etude op 10 N◦5 (9)
where the right hand plays the pentatonic (black keys only) while the left hand wanders through several
keys, G flat and D flat major for instance. This result has been observed (especially in this pentatonic ⊂
major scale case) and commented2 although perhaps it has not been stated and proved as a quality of all
ME sets (or, more generally, generated scales).

Figure 9. Etude N◦5 opus 10, Frédéric Chopin

So David Lewin, who almost invented ME sets as we have seen, might also have originated Kh−theory
too in one fell swoop.

6 Coda

We have examined the definition of the DFT of a pc-set, according to David Lewin. Several interesting
features of the pc-set are encapsulated in the absolute value of this function.

Following then Ian Quinn, we were led to advance an original definition of Maximally Even sets, which
appears to be geometrical, concise, elegant, and illuminating3. We hope that this definition will become a
productive one.

1In some special cases, there might be more than two generators – or less, eg d = c/2.
2For instance in [17], 2.3: “ all secondary prototypes are Kh-related to one another”, which seems to be an equivalent statement to

the theorem above.
3Though less general than [10] which allows all possible strictly convex measures on the unit circle to be chosen indifferently.
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